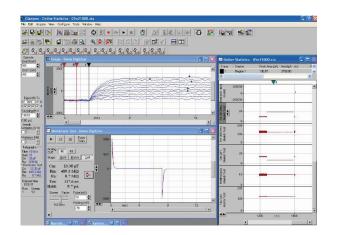


Together through life sciences.

pCLAMP workshop

Jeffrey Tang, PhD 2013

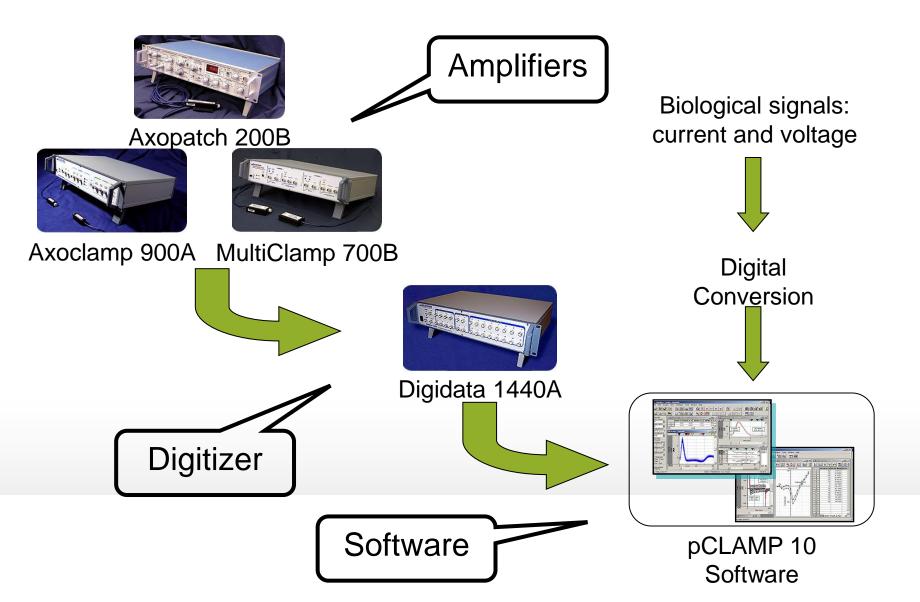
Axon Conventional Electrophysiology Family

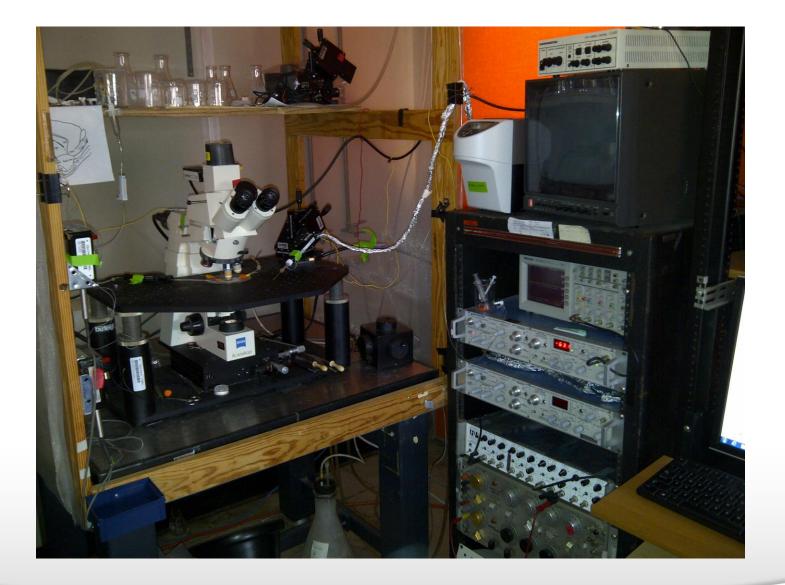

- pCLAMP software
 - Clampex-data acquisition
 - Clampfit-Data analysis
 - Axoscope-Data continuous monitoring
- Digitizer
 - Digidata 1440A-Analog-to-Digital converter
- Patch-clamp amplifiers
 - Axopatch 200B
 - MultiClamp 700B
 - AxoClamp 900A

Together through life sciences.

©2012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of Molecular Devices, LLC or their respective owners.

00000





Flow of recording signal

Electrophysiology rig

Together through life sciences.

Measurement Techniques

- Extracellular voltage recording
 - Single unit and field potential recording in brain or brain slices, electrocardiagrams, encephalograms and oculograms
- Voltage clamp
 - Voltage is held constant and the current passing through the cell membrane is measured
 - Patch-clamp recording
- Two electrode voltage clamp
 - Voltage is held constant through one electrodes and current is measured with the other electrode
- Current clamp
 - Current is held constant and the corresponding membrane voltage of the cell is measured
- Intracellular sharp electrode recording
 - Measurement of action potentials
 - Bridge balance for the pipette resistance
- Discontinuous clamp
 - Amplifier divides its time between passing current and recording voltage
- Ion-selective electrodes and electrochemistry
 - Measurement of small changes in ion, neurotransmitter her hand hormone concentrations in tissues and cells

©2012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of Molecular Devices, LLC or their respective owners.

MolDev Axon CEP Products

The position of Molecular Devices

- Market leader
 - Axon brand
 - over 25 years
 - High quality
 - ultra low noise amplifiers
 - High speed, low noise digitizers
 - Reliable
 - Lasting in a good condition for many years
 - Technical support
 - Professional assistance

- Large install base (17,000)
 - Academic research labs
 - Pharmaceutical/biotechnology drug discovery labs
 - >10K amplifiers sold
 - >10K digitizers sold
 - >10K copies of pCLAMP

Customer support activities

- Scientific conferences
 - Society for Neuroscience
 - Biophysical Society
 - FENS
- Online webinars
 - Getting the Most Out of pCLAMP series

- pCLAMP Workshops at university
 - Duke University
- University loaner program/Support training courses
 - Cold Spring Harbor marine biology lab
 - Woods Hole marine biology lab
 - Australian Course in Advanced Neuroscience (ACAN)
 - Patch clamp workshop in Singapore
 - More...

Together through life sciences.

A Walkthrough of Protocol Editor in Clampex

Molecular Devices

Golden Tips that help

- Study manual
- Study manual again
- Ask someone who uses pCLAMP
- Clampex tutorial
- Online HELP
- Knowledge base
- Webinar tutorials
- Technical Support

Together through life sciences.

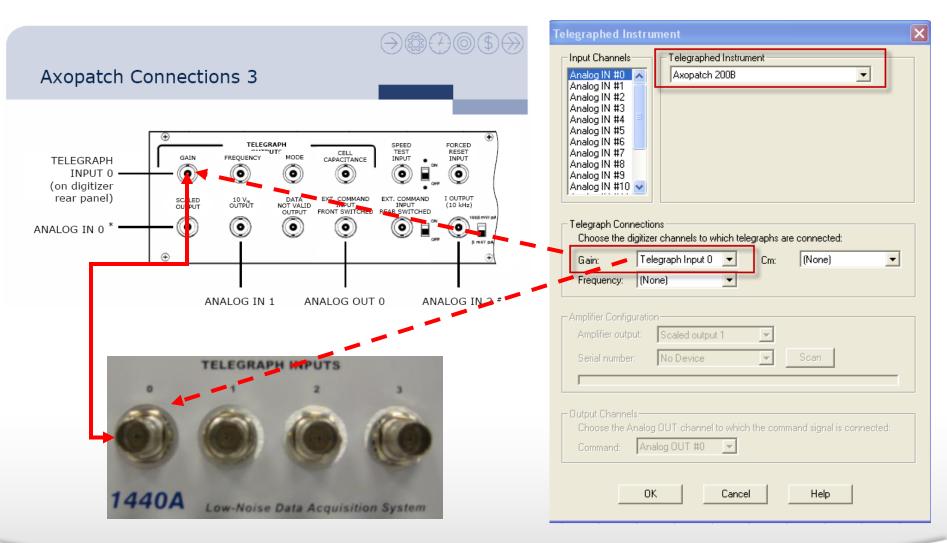
Agenda

Edit Protocol - (untitled)	
Mode/Rate Inputs Outputs Trigger Statistics Comments Math Waveform Stimulu	is

- Acquisition Mode
- Inputs
- Outputs
- Trigger
- Statistics
- Comments
- Math
- Waveform

Feature Highlights

- Acquisition modes
- Scope trigger
- Holding level overrides
- Digital OUT holding pattern
- Stimulus file
- Digital bit pattern
- Pre-sweep train
- P/N leak subtraction
- User list
- Membrane test between sweeps


Together through life sciences.

Telegraphs

 Clampex can receive and incorporate arrange of "telegraphed" amplifier settings as the variable gain, lowpass filter, whole-cell capacitance compensation.

Telegraph setting in AxoPatch[™] 200B

Together through life sciences.

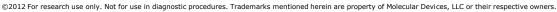
Telegraph setting in AxoPatch[™] 200B

Lab Bench 🔀	Lab Bench 🛛 🗙
Input Signals Digitizer Channels Signals Ipatch Add Inalog IN #0 Image IN #0 Analog IN #1 Image IN #0 Analog IN #3 Image IN #0 Analog IN #3 Image IN #0 Analog IN #4 Image IN #0 Analog IN #5 Image IN #0 Analog IN #5 Image IN #0 Analog IN #6 Image IN #0 IN 0 Rename IN 0 Scaling Signal units: p A Default Scale factor (V/pA): 0.001 Scale Factor Offset (pA @ 0 V): 0 Software RC Filter Hardware Signal Conditioning Lowpass (kHz): Image Information Highpass (Hz): Image Information Frequency (Hz): 10000	Input Signals Digitizer Channels Signals Image IN #0 Add Analog IN #1 Add Analog IN #1 Image IN Analog IN #2 Image IN Analog IN #3 Image IN Analog IN #4 Image IN Analog IN #4 Image IN Analog IN #5 Image IN IN 0 Rename IN 0_KK Image IN Signal units: Image IN Scaling Signal units: Signal units: Image IN IN 0 Scale Factor Offset (pA @ 0 V): Image IN Software RC Filter Hardware Signal Conditioning Lowpass (Hz): Image IN Gain: 5 Cmap IN Image IN Gain: 5 Cmap IN Image IN Image IN Image IN Image IN <
OK Cancel Help	OK Cancel Help
Together through life	SCALED OUTPUT OUTPUT GAIN (() OVLD x 10 x 20 x 2 x 100 x 2 0 x 1 x 200 x 1 x 200 x 2 0 x 1 x 200 x 200 x 1 x 200 x 200

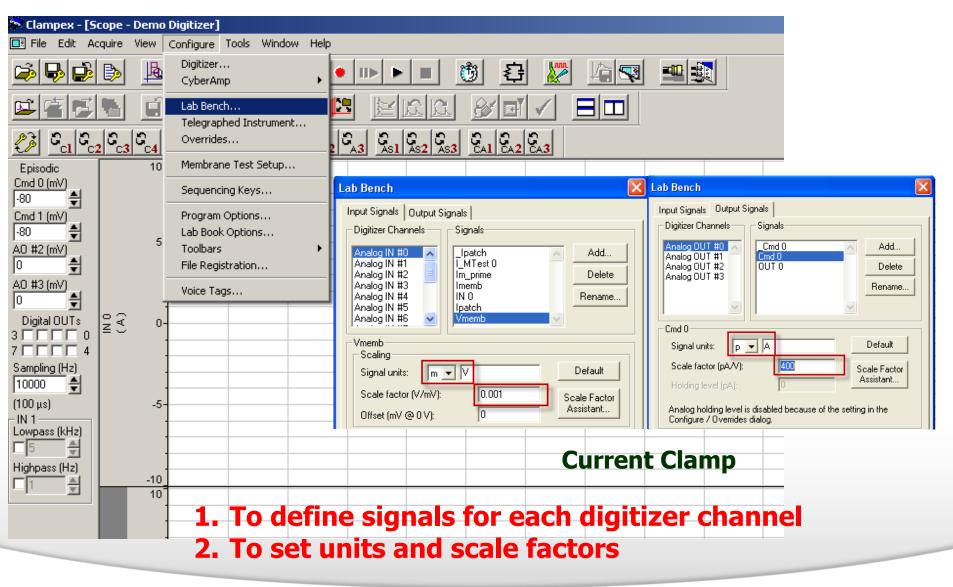
Molecular Devices

Telegraph setting in MultiClamp[™] 700B

Telegraphed Instrument	🔩 MultiClamp 700B: (00103420) 📃 🗖 🔀	Lab Bench 🛛 🗙					
Input Channels Telegraphed Instrument Analog IN #0 Analog IN #1 Analog IN #1 Analog IN #2 Analog IN #2 Analog IN #2 Analog IN #2 Analog IN #3 Analog IN #3 Analog IN #4 Analog IN #5 Figure 1 Analog IN #5 Figure 1 Analog IN #6 Figure 1 Analog IN #7 Figure 1 Analog IN #6 Figure 1 Analog IN #6 Figure 1 Analog IN #7 Figure 1 Analog IN #8 Figure 1 Analog IN #8 Figure 1 Analog IN #9 Figure 1 Analog IN #9 Figure 1 Analog IN #10 Continue trial when mode, scale factor or units change.	Channel 1 I (pA) -2.6 -6.4 Resistance Ims Mode VC VC IC Ext V-Clamp 1 V-Clamp 1 V-Clamp 2	Input Signals Output Signals Digitizer Channels Signals Analog IN #0 Add Analog IN #1 Imprime Analog IN #2 Imprime Analog IN #3 Delete Analog IN #4 IN 0 Analog IN #5 IN 0_KK In 0_KK Ipatch					
Telegraph Connections Choose the digitizer channels to which telegraphs are connected: Gain: Telegraph Input 0 I Cm: Frequency: Telegraph Input 1 I	Holding: 0 mV Seal Test: 100 Hz Cp Fast: 3.850 pF Image: Comparison of the state of t	IN 0 Scaling Signal units: p ▼ A Default Scale factor (V/pA): 0.001 Scale Factor (V/pA): 0					
Amplifier output: Primary output 1 Serial number: 00103420 Scan	Auto Correction: 0 % Prediction: 0 % Disable if oscillation detected Primary Output: Membrane Current (2.5 V/nA) Gain: 5 Bessel: 10 kHz AC: DC Scope: Bypass Output Zero Lock Subtraction	Software RC Filter Hardware Signal Conditioning Lowpass (kHz): 5 Highpass (Hz): 1 Telegraphs					
Output Channels Choose the Analog OUT channel to which the command signal is connected: Command: Analog OUT #0 OKCancelHelp	0 mV Auto 10.00 MΩ Auto Secondary Output: Membrane Potential (10 mV/mV) Gain: 1 Lowpass Filter: 10 kHz Pulse 10 mV 10 ms Zap 500 μs Rf: 500 MΩ	Gain: 5 Cm (pF): 0.000 Frequency (Hz): 10000 Scale factor (V/nA): 0.5 OK Cancel Help					


Together through life sciences.

Lab Bench setting in AxoPatch[™] 200B


🛜 Clampex - [Scope	- Demo	Digitizer]	
📑 File Edit Acquire	· View	Configure Tools Window Help	
📸 🗣 🛃 🔈		Digitizer CyberAmp •	
Episodic Crnd 0 (mV)	3 C ₄	Membrane Test Setup	
·80 ◆ Cmd 1 (mV) ·80 A0 #2 (mV) 0 ▲0 #3 (mV) 0 Digital OUTs 3 7 4 Sampling (Hz) 10000	5	Sequencing Keys Program Options Lab Book Options Toolbars File Registration Voice Tags	Lab Bench X Lab Bench Input Signals Output Signals Input Signals Input Signals Digitizer Channels Signals Digitizer Channels Signals Input Signals (N #1) Imprime Analog IN #2 Analog IN #3 Analog IN #2 Analog IN #3 Delete Imprime Innemb Rename Ipatch Rename IN 0 Rename Ipatch Rename IN 0 Rename Cmd 0 OUT 0 Scaling Signal units: p < A
(100 μs) IN 1 Lowpass (kHz)	-5- - -10 10		Scale factor (V/pA): Offset (pA @ 0 V): 0 Voltage Clamp ne signals for each digitizer channel Inits and scale factors
		2. 10 set t	inits and scale factors

Molecular Devices

Together through life sciences.

Lab Bench setting in AxoPatch[™] 200B

Together through life sciences.

Lab Bench setting is telegraphed in MultiClamp[™] 700B

Telegraphed Instrument	Lab Bench 🔀
Input Channels Telegraphed Instrument Analog IN #1 Analog IN #2 Analog IN #2 Analog IN #2 Analog IN #3 Amalog IN #4 Analog IN #4 Analog IN #4 Analog IN #5 Analog IN #5 Analog IN #6 Analog IN #6 Analog IN #7 Analog IN #8 Analog IN #8 Analog IN #8 Analog IN #8 For simultaneously switch protocols, configure special Sequencing Keys (V-Clamp or I-Clamp IN). Continue trial when mode, scale factor or units change.	Input Signals Digitizer Channels Analog IN #0 Analog IN #1 Analog IN #2 Analog IN #3 Analog IN #5 Analog IN #5 Analog IN #6
Telegraph Connections Choose the digitizer channels to which telegraphs are connected: Gain: Telegraph Input 0 • Frequency: Telegraph Input 1 •	IN 0 Signal units: p ▼ A Default Scale factor (V/pA): 0.001 Scale Factor Assistant
Amplifier Confiduration Amplifier output: Primary output 1 Serial number: 00103420 Scan	Software RC Filter Lowpass (kHz): 5 Highpass (Hz): 1 CyberAmp
Output Channels Choose the Analog OUT channel to which the command signal is connected: Command: Analog OUT #0 -	Telegraphs Glain: 1 Cm (pF): 0.000 Frequency (Hz): 10000 Scale factor (V/nA): 0.5
OK Cancel Help	OK Cancel Help

Together through life sciences.

Protocol Editor

🛜 Clampex - [Scope - Demo Digitize	r]													
📑 File Edit	Acquire View Configu	Edit Protocol - (unt	itled)								×				
	New Protocol	Mode/Rate Inputs	Outputs Tri	Edit Protocol - (untitled	I)										X
	Open Protocol	-Acquisition Mode-		Mode/Rate Inputs Outp		ioner Ì S	tatistics	Comme	nte Í Mat	h Wa	veform	Stimulus	1		
n car car a la	Save Protocol	C Gap-free		modernate inputs out	uts j n	igger o	tausues	Comme				ounaias	1		-1
	Save Protocol As	C Variable-le	enath events	Waveform Analog OUT:	Cmd 0		Info								
23 G_k	Edit Protocol Waveform Preview			Analog Waveform -					🔲 Digit	al Outpul	ts —				
	Export protocol (pCL4	Trial Hierarchy	0	🖲 Epochs 🔿 Stimu	ilus file				- <u>R</u> 4	Active hig	gh logic fa	or digital t	rains	Info	
Episodic Cmd 0 (mV)		Trial delay (s):		Intersweep holding le		Jse holdir	ng 🔻	7 F	Inter	awaan b	it pattern:		e holding		
-80	Record	Runs/trial:	1	Intersweep holding le	ver. ju	536 110101	ig		Inter	sweep n	it pattern.	103	s noiding		
Cmd 1 (mV)	Re-Record	Sweeps/run:	10	Epoch Description	A	B	C	D	E	F	G	Н		J	
-80	View Only			Туре	Step	Off	Off	Off	Off	Off	Off	Off	Off	Off	
A0 #2 (mV)	Pause-View	Sweep duration (s):		Sample rate	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	
0	Pause	First holding: 3.1 ms	Epochs: 193.8 ms	First level (mV) Delta level (mV)	112 -20	0	0	0	0	0	0	0	0	0	
AO #3 (mV)	Stop Repeat	31 samples	1938 san	First duration (ms)	100	0	0	0	0	0	0	0	0	0	
0	Write Last	Sampling Rate per S	Signal	Delta duration (ms)	0	0	0	0	0	0	0	0	0	0	
Digital OUTs	Autotrigger			Digital bit pattern (#3-0)	1111	0000	0000	0000	0000	0000	0000	0000	0000	0000	
ЗГГГГ		Fast rate (Hz):	10000	Digital bit pattern (#7-4)	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
7 🗆 🗆 🗆	Time Tag	Slow rate (Hz):	10000	Train rate (Hz) Pulse width (ms)	0	0	0	0	0	U	0	U	U	0	
Sampling (Hz)	Comment Tag	j 510W Tate (H2).	1.0000	· · · ·	0	U	U	0 0	-		0	0	0	0	
10000 🚔	Voice Tag	Space available is 6	00153 sweep	Number of sweeps = 10				Alloca	ated time:		11)6.2 of 20	JU ms		
(100 µs)	1 Conditioning.pro	Allow automatic a		Stimulus File											
– IN 0 Lowpass (kHz)_	2 Baseline.pro	Niow automatic t	andiyala in oli k	Summary											
				Juninary											
Highpass (Hz)			1	Channel #0 Channel #1	Chan	nel #2 _ (Channel ‡	13		ternate V	Vaveform	s 🔲 Alt	ernate D	igital Outpu	uts
	-10000	OK (Cancel												
<u> </u>	10		ito u	OK Cance	el	He	elp		quisition n Episodic		on		Upda	te Preview	1
		otocol Ed	ILOF:						Episodic	sumulau	011				-
-	lis a	the "ce	ntraľ	" for proto	col		itir								_
								·9·			_				
The second base of the	ugh life sciences.											_		lecula	

Together through life sciences.

Acquisition Mode?

Molecular Devices

Mode/Rate

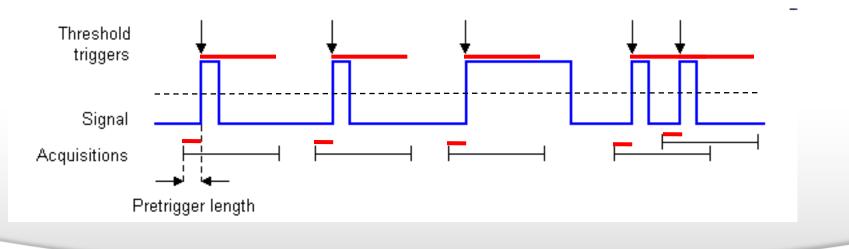
Edit Protocol - (untitled)							
Mode/Rate	Inputs Outputs Trigger Statistics Comments Math Waveform Stimulus						

- Passive Acquisition
 - Gap-free
 - Fixed-length
 - Variable-length
 - High-speed oscilloscope

- Stimulus Acquisition
 - Episodic stimulation

Gap-free Mode

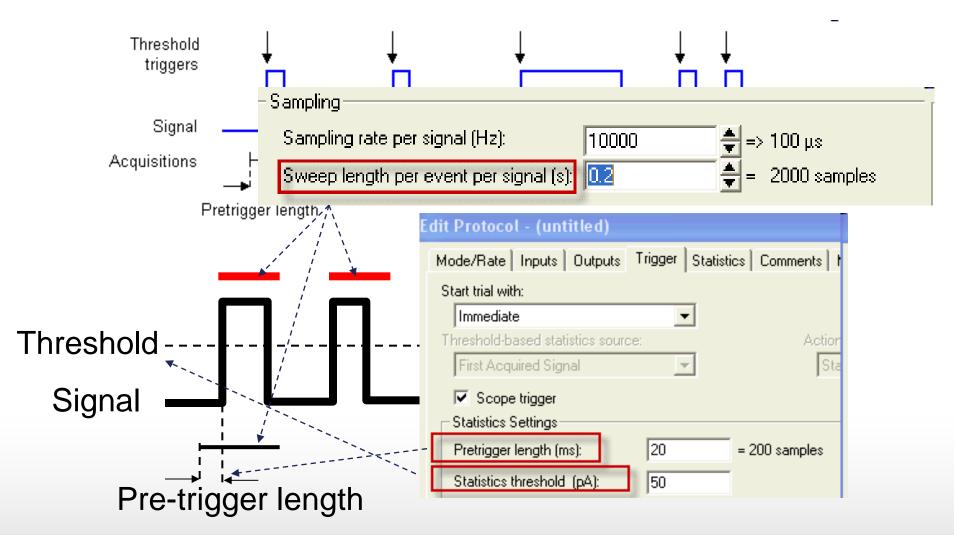
- Data are acquired continuously
- No gaps in data file
- single-channel or minis recordings



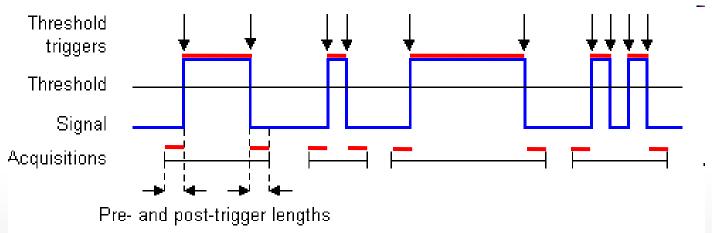
 Together
 through
 life
 sciences.

 ©2012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of Molecular Devices, LLC or their respective owners.

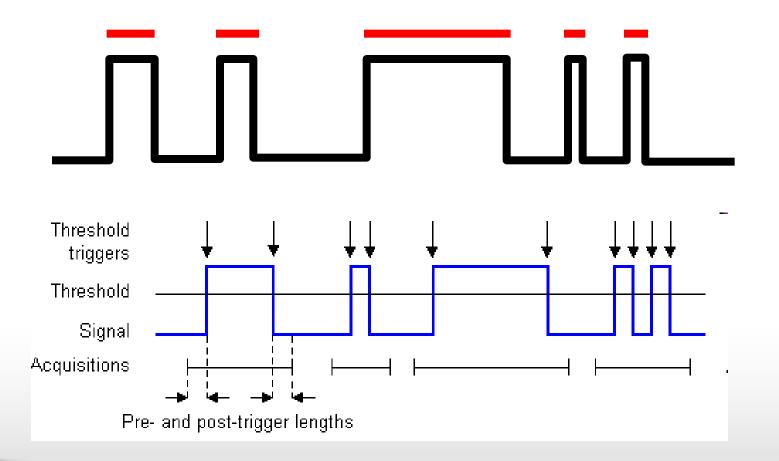
Fixed-length Events Mode


- Constant data segment above the threshold and pre-trigger portion are recorded
- Action-potential spikes or other constantwidth events recordings

Fixed-length Event Mode

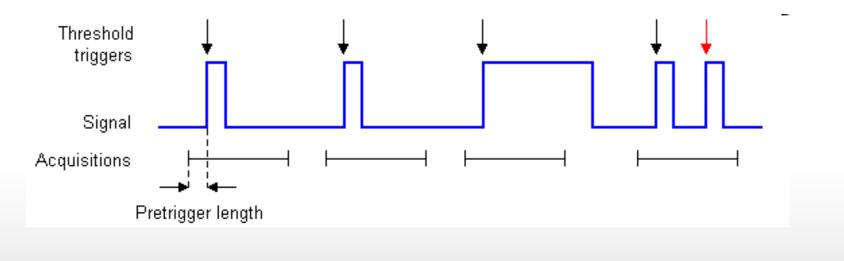


Variable-Length Events Mode


- Data above the threshold, and for pre- and post-trigger periods are recorded.
- Variable recorded segment
- "Bursting" data recording

Together through life sciences.

Variable-Length Events Mode



Together through life sciences.

High-Speed Oscilloscope Mode

- Like an oscilloscope
- Data above the threshold, and for pre- and post-trigger periods are recorded.

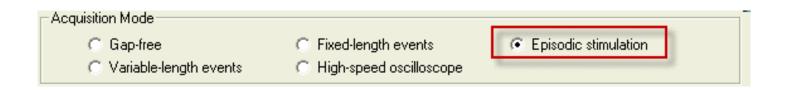
©2012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of Molecular Devices, LLC or their respective owners.

Together through life sciences

Passive acquisition modes

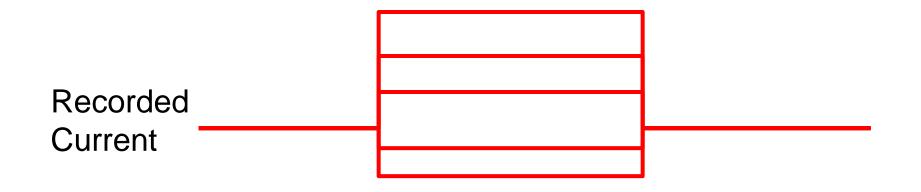
dit Protocol - (untitled)
Mode/Rate Inputs Outputs Acquisition Mode © Gap-free © Variable-length eve Check this option to acquire data until the disk is full, or until acquisition is stopped manually
Trial Length O Use available disk space O Duration (hh:mm:ss): 00:00:05 = 0.10 MB Space available = 57:03:16 (hh:mm:ss) (28493 MB).
Sampling Sampling rate per signal (Hz): Sweep length per event per signal (Hz): Sweep
Specify the sampling rate of the analog-to-digital conversion
Allow automatic analysis in other programs Enable Configure / Automatic Analysis in Clampfit to DK Cancel Help

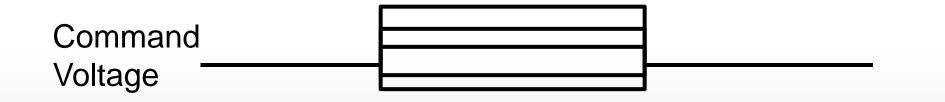
Together through life sciences.



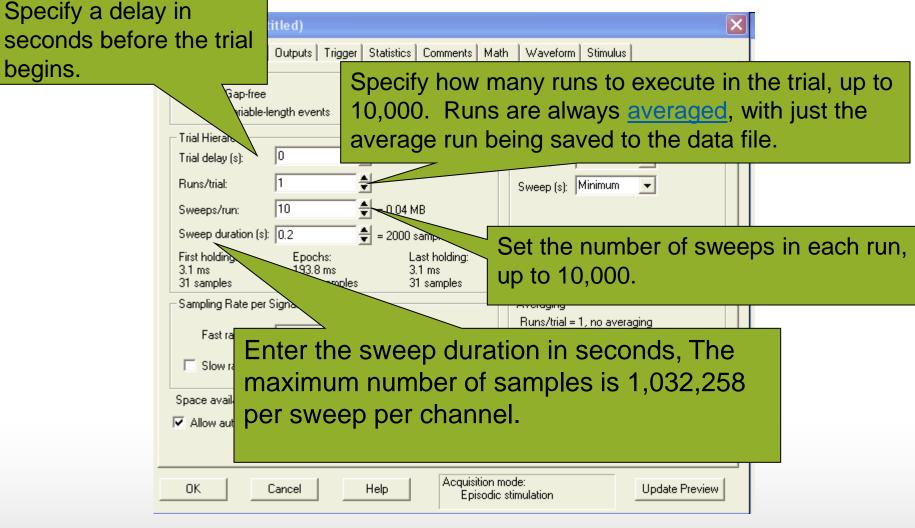
High-speed Oscilloscope Mode

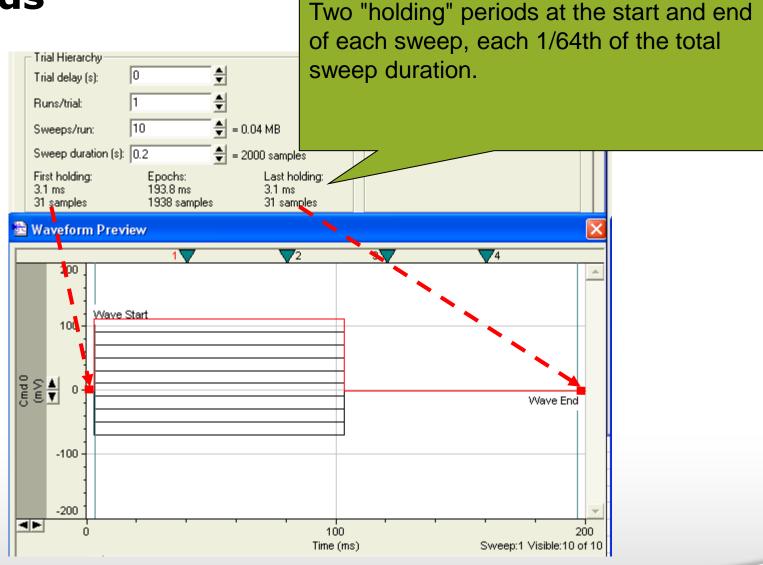
Edit Protocol - (untitled) 🔀	
Mode/Rate Inputs Outputs Trigger Statistics Comments Math Waveform Stimulus	
C Gap-free C Fixed-length events C Episodic stimulation C Variable-length events C High-speed oscilloscope	
Trial Length Averaging Options	
C Use available disk spa_Type of Average	
Duration (sweeps): Cumulative	
Space available = 102698 C Most recent Weighting (%): 10 🚔 ~ 10 sweeps in average	
Sampling 🔽 Undo File	
Sampling rate per signal Update every (sweeps): 1, 2, 5	
Sweep length per event C Always prompt to allow undo	
Prompt on premature termination only	
Averaging OK Cancel Help Default	
Allow automatic analysis in other program Check this option to save the raw average sweep OK Cancel He	sweeps and



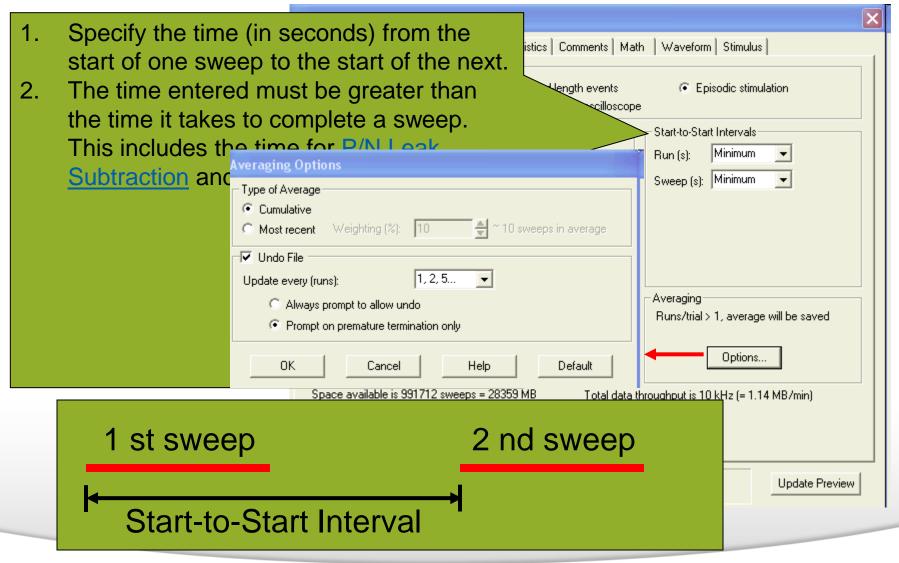


- Provide a command waveform and record responses, in fixed-length sweeps
- Analog waveform, holding level and/or digital pulses are outputs
- Special features include pre-sweep trains, online leak current subtraction, online event detection and statistics, and an on-line derived-math channel.




Molecular Devices

Together through life sciences.


Together through life sciences.

Episodic Stimulation Mode---Holding Periods

Together through life sciences.

Together through life sciences.

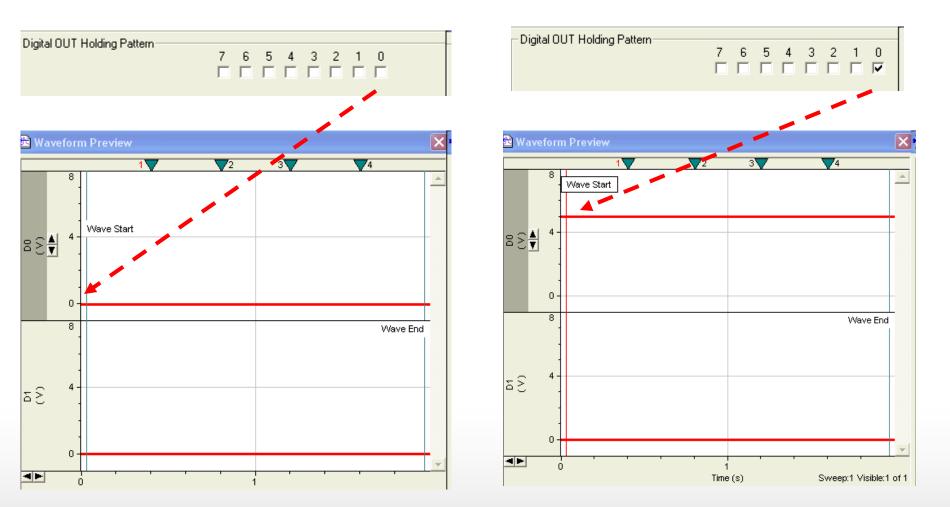
Inputs

🖉 Clampex - [•			
Edit Ad			Window Help	 	1 1	 ((1
🚔 🗣 🗳	De 🖪		09	<u> </u>	ŧ 🌌 -		
	6	844	€ 12-12				
<u>୧</u> ୦ ଜ _ା ଜ _ା	2 C ₃ C ₄	ତ _{୍ର} ାତ _{୍ର} ାତ _{୍ମ} ାତ୍	8 G _{A1} G _{A2} G	Gal Cal Ca2	EA3		
Episodic Cmd 0 (mV)							
	<u> </u>						
Cmd 1 (mV) 0 €	€ € 20000 € -20000						
Cmd 2 (nA)	-20000 3456780 100000 100000 10000 100000 10000 10000 10000 10	-					
Cmd 3 (mV) 0 €							
Digital OUTs	중 은 -10000						
	₹ 2 0 -10	-					
Sampling (Hz) 10000 🚔	S (10 ≥ 0 ≤ 10	-					
(100 μs)	-10						
IN 0 Lowpass (kHz)	≅ 2 0 <u>≤ -10</u>						
□ 5 🔮 Highpass (Hz)		-					
	= <u>-10</u> ∞ (10 ∞ (10 ∞ (10) ∞ (
- Telegraphs —— Filter: 10 kHz	-10						
Gain:1 Cm:0pF	≊ 2 0 ≝ 2 -10	-					
Ra: 0M							
Elapsed time		-					
0:00:00 Run Sweep		-					
		-					
	v 0 10						
	<u>∑</u> ≥ 0 -10						
		o I	(ms)	50			1

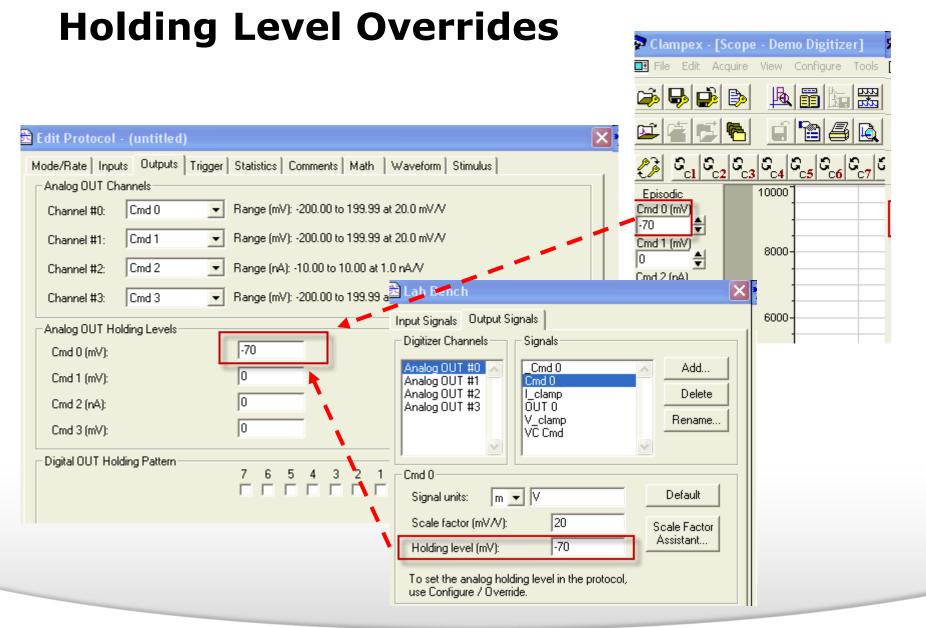
Together through life sciences.

Q & A

- Q: Why the selected input name in the Lab Bench does not show up in the scope window?
- A: You need to select the input name in the Input tab of the Edit Protocol.


Outputs

Ð	Edit Protocol	- (untitled)				Þ		
N	Mode/Rate Inputs Outputs Trigger Statistics Comments Math Waveform Stimulus							
Analog OUT Channels								
	Channel #0:	Cmd 0	-	Range (mV): -2	200.00 to 199.99 at 20.0 mV/V	Voltage-clamp		
Channel #1: Cmd 1			-	Range (mV): -2	Range (mV): -200.00 to 199.99 at 20.0 mV/V			
Channel #2: Cmd 2			-	Range (nA): -10.00 to 10.00 at 1.0 nA/V Current		Current-clamp		
	Channel #3:	Cmd 3	•	Range (mV): -2	200.00 to 199.99 at 20.0 mV/V			
I I	-Analog OUT Ho	olding Levels			Check to specify	one digital output		
	Cmd 0 (mV):			-70		· · ·		
Cmd 1 (mV):		0	channel to go high (and stay high) during the entire length of a trial					
	Cmd 2 (nA):			0				
	Cmd 3 (mV):			0				
	- Digital OUT Hol	lding Pattern		765	4 3 2 1 0			
l								



Digital Out Holding Pattern

Together through life sciences.

Together through life sciences.

Holding Level Overrides

🗟 Lab Bench 🛛 🗙	🗈 Lab Bench 🛛 🔀 🕯
Input Signals Output Signals	Input Signals Output Signals
Digitizer Channels Signals	Digitizer Channels Signals
Analog OUT #0 Cmd 0 Add	Analog OUT #0 Add
Analog OUT #1 Cmd 0 Analog OUT #2 L_clamp Delete	Analog OUT #2 I_clamp Delete
Analog OUT #3 OUT 0 V_clamp Rename	V_clamp Rename
VC Cmd	
Cmd 0	Cmd 0
Signal units: m 💌 V Default	Signal units: m 💌 V Default
Scale factor (mV/V): 20 Scale Factor	Scale factor (mV/V): 20 Scale Factor
Holding level (mV):	
Analog holding level is disabled because of the setting in the Configure / Overrides dialog.	To set the analog holding level in the protocol, use Configure / Override.
Digital OUT Channels	Digital OUT Channels
7 6 5 4 3 2 1 0 Holding pattern:	7 6 5 4 3 2 1 0
Digital holding pattern is disabled because of the setting in the Configure / Overrides dialog.	To set the digital holding level in the protocol, use Configure / Override.
Set digital OUT bit high during acquisition: 🔲 Digital Bit: 4 💌	Set digital OUT bit high during acquisition: Digital Bit: 4
OK Cancel Help	OK Cancel Help

Together through life sciences.

Holding Level Overrides

Clampex - [Scope - Demo	o Digitizer]	
📓 File Edit Acquire View (Configure <mark>Tools Window He</mark>	elt (i
F B B	Digitizer CyberAmp 🛛 🕨	
	Lab Bench Telegraphed Instrument	
<u>୧</u> ୁ ାଟ _ା ଟ _ୁ ାଟ _ୁ ଟ _ୁ ଟ _ୁ ଟ୍ରୁ ଟ୍ରୁ	Overrides	🗈 Overrides 🛛 🔀
		 Check to override individual protocol settings: Use analog holding levels from Lab Bench Use digital holding pattern from Lab Bench Use most recent file comment Use this sampling rate (Hz): 1000 Keep existing Scope window size and position OK Cancel Help

Together through life sciences.

Q & A

 Q: How do I change the command voltage for more than 200 mV

Analog OUT Cha	og OUT Channels	
Channel #0:	Cmd 0	■ Range (mV): -200.00 to 199.99 at 20.0 mV/V

 A: You need to change the scale factor and external sensitivity of analog output signal on the Lab Bench

Scale Factor/ External Command Sensitivity

Lab Bench Input Signals Input Signals Signals	🖻 Lab Bench 🔁 Scale Factor Assistant: Axopatch 200 series
Analog OUT #0 Analog OUT #1 Analog OUT #2 Analog OUT #3 Cmd 0 L clamp OUT 0 V_clamp VC Cmd Cmd 0 L clamp OUT 0 V_clamp VC Cmd	With some extra information about the state of your amplifier the Scale Factor Assistant will automatically choose the command scale factor. Fill in the form below to have the command scale factor automatically calculated: 1. Mode Setting Specify the setting of the Mode switch on the front panel of the Axopatch: Track C V-Clamp
Signal units: m 💌 V Default	C I=0 C I-Clamp Normal C I-Clamp Fast
Scale factor (mV/V): 100 Scale Factor Holding level AultiClamp 700B (Demo) Image: Comparison of the sector of the s	2. Config Setting Specify the setting of the Config switch on the front panel of the Axopatch: Patch Patch Whole Cell (B=1) Whole Cell (B=0.1)
Quick Select Advanced About General Gains Auto Audio Image: Channel 1 Channel 2	3. Ext. Command Input Specify which external command input you have the command voltage connected to:
Voltage Clamp Feedback Resistor Experiment Type Range C 50 MΩ Whole Cell 1 - 200 nA C 500 MΩ Whole Cell 0.1 - 20 nA	C 20 mV/V ● 100 mV/V (Axopatch 200B only) Scale factor = 100 mV/V.
C 5 GΩ Patch 10 - 2000 pA C 50 GΩ Patch 0.2 - 200 pA External Command Sensitivity	Help < Back Finish Cancel
C OFF C 20 mV/V ● 100 mV/V	

Molecular Devices

Together through life sciences.

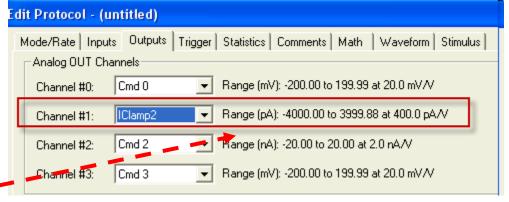
Scale factor/Output

🖻 Lab Bench 🛛 🔀	🔁 Edit Protocol - (untitled)
Input Signals Output Signals Digitizer Channels Signals Analog OUT #0 Analog OUT #1 Analog OUT #2 Analog OUT #3 Cmd 0 Cmd 0 Cmd 0 Cmd 0 L clamp OUT 0 V_clamp VC Cmd Rename VC Cmd	Mode/Rate Inputs Outputs Trigger Statistics Comments Math Waveform Stimulus Analog OUT Channels
Cmd 0 Default Signal units: m ✓ Default Scale factor (mV/V): 100 Scale Factor Holding level (mV): -70 Assistant	

Together through life sciences.

Q & A

Q: I want to perform current clamp experiment. How do I change the command voltage to current


Analog OUT Channels				
Channel #0:	Cmd 0	► Range (mV): -200.00 to 199.99 at 20.0 mV/V		

 A: You need to change the signal unit and scale factor on the Lab Bench.

.ab Bench		
Input Signals Output Si Digitizer Channels	gnals _ Signals	
Analog OUT #0 Analog OUT #1 Analog OUT #2 Analog OUT #3	Cmd 0 Cmd 0 I clamp IClamp1 OUT 0 V_clamp VC Cmd	Add Delete Rename
- I_clamp Signal units: _ p _	• A	Default
Scale factor (pA/V): Holding level (pA):	400	Scale Factor Assistant

Together through life sciences.

Trigger

P	🖀 Edit Protocol - (untitled)						
	Mode/Rate Inputs Outputs Trigger S						
	Start trial with:						
	Immediate 🗨						
	Tr Immediate Digitizer START Input Space Bar Line Frequency						
	Software Message (Start Only) – Software Message (Start and Stop)						

Immediate

 As soon as you choose <u>Acquire / Record</u> or <u>Acquire / View Only</u>, or press the equivalent toolbar button, the trial starts.

Digitizer START Input

- To trigger the start of a trial from an external device.
- Space Bar
 - Start the trial with a toolbar press or mouse click.
- Line Frequency
 - Only for series 132x Axon digitizers
 - synchronized with the mains line frequency (typically 50 or 60 Hz).
- Software Message
 - To trigger the trial from the other program

Together through life sciences.

Trigger

3	Edit Protocol - (untitled)					
	Mode/Rate Inputs Outputs Trigger 9					
	Start trial with:					
	Software Message (Start and Stop) 💌					
	Trigger source:					
	Internal Timer					
	Internal Timer					
	Digitizer START Input					
	Space Bar Line Frequency					
	End frequency					

Internal Timer

 Determines acquisition according to the length of the sweeps and Start-to-Start Intervals and any Conditioning Trains or P/N Leak Subtraction

First Acquired Signal

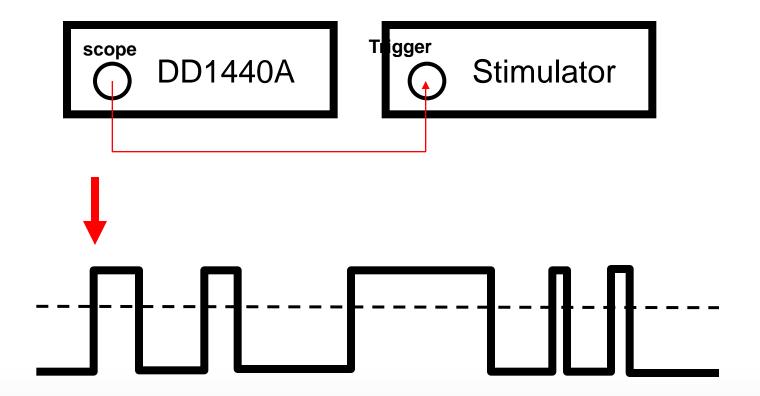
• Once a threshold in the signal from the first Analog IN Channel is crossed.

Digitizer START Input

- To trigger the start of a trial from an external device.
- Space Bar
 - Acquisition is started by pressing the space bar
- Line Frequency
 - Only for series 132x Axon digitizers
 - Synchronized with the mains line frequency (typically 50 or 60 Hz).

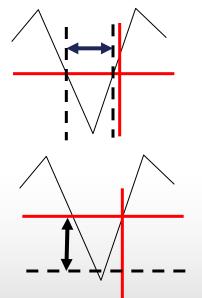
Together through life sciences.

Scope Trigger


🔽 Scope trigger				
Statistics Settings				
Pretrigger length (ms):	5	= 50 samples	Polarity Rising	
Statistics threshold (pA):	4780		C Falling	
Hysteresis				

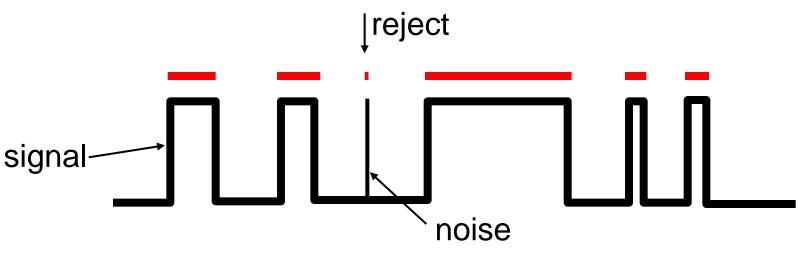
- A 5 V TTL trigger signal from a digitizer output when the signal reaches the threshold.
 - The rear panel TRIGGER OUTPUT BNC (Digidata 1322)
 - The front panel SCOPE BNC (Digidata 1440)

Scope trigger



Molecular Devices

Hysteresis


✓ Scope trigger Statistics Settings Hysteresis		
Pretrigger length (m Air A Time hysteresis (ms):	0.1 = 1 samples	
Statistics threshold	0.10 = 19.84 pA	
Hysteresis		

- To prevent signal noise activating false triggers, you can adjust the hysteresis settings to reduce trigger sensitivity.
- Time hysteresis
 - This field adjusts the amount of time that the signal has to be under the threshold level (as determined by the Level Hysteresis setting below) to re-arm the trigger.
- Level hysteresis
- This field adjusts the distance that the signal must be under the threshold in order to re-arm
 Together the threefetrigger (subject to the Time Hysteresis
 Collector research use thing a brook of the median are property of Molecular Devices, LLC or their respective owners.

Time hysteresis

 Adjust the time hysteresis to reduce sensitivity to avoid the false triggers.

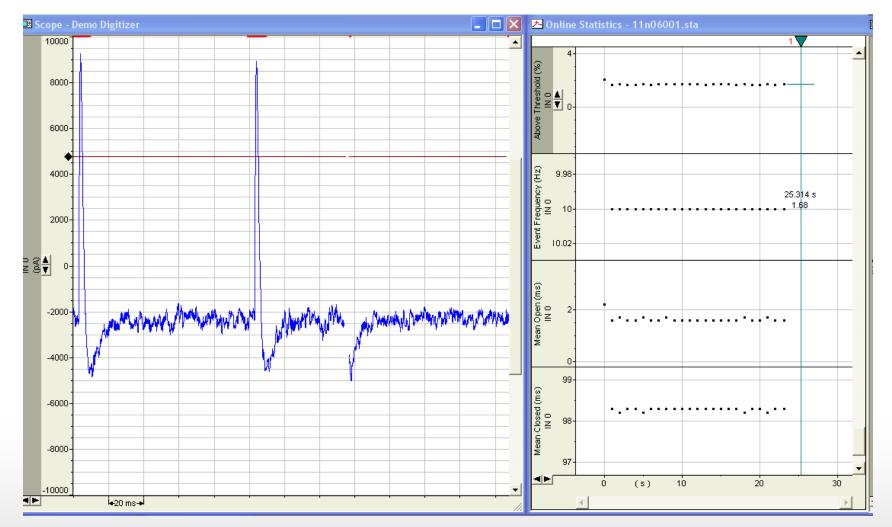
Together through life sciences.

Threshold-Based Statistics

✓ Threshold-Based Statistics	
Percentage above threshold Mean open (ms)	
Event frequency (Hz) Mean closed (ms)	
Statistics update period (s): 1 = 10000 samples	
Always save statistics at the end of each recording	ing

Percentage above threshold

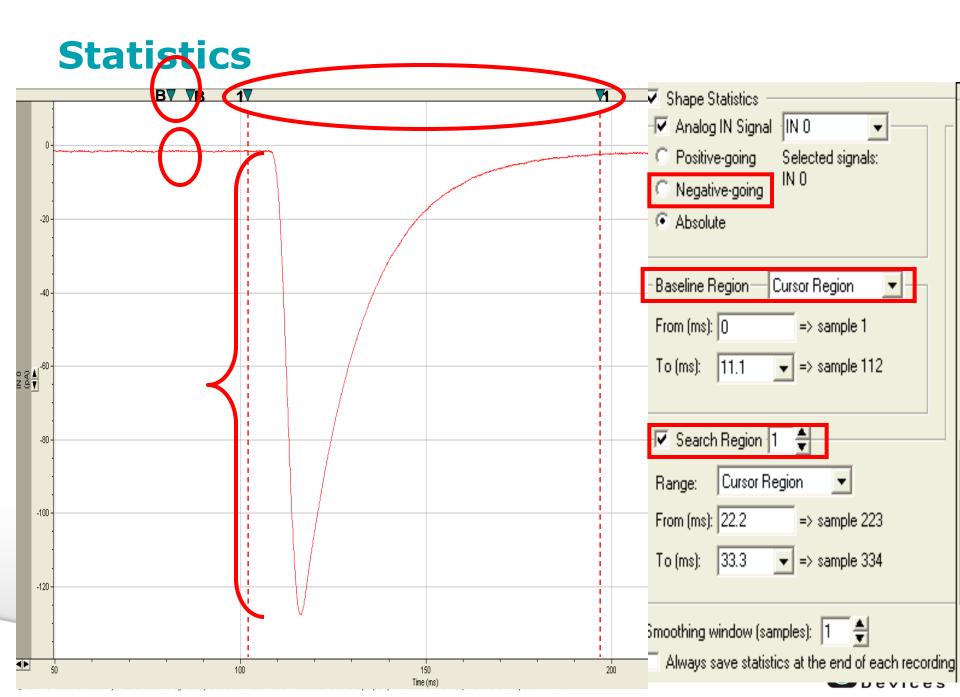
 Display the percentage of time that the signal is above the threshold value


Event frequency (Hz)

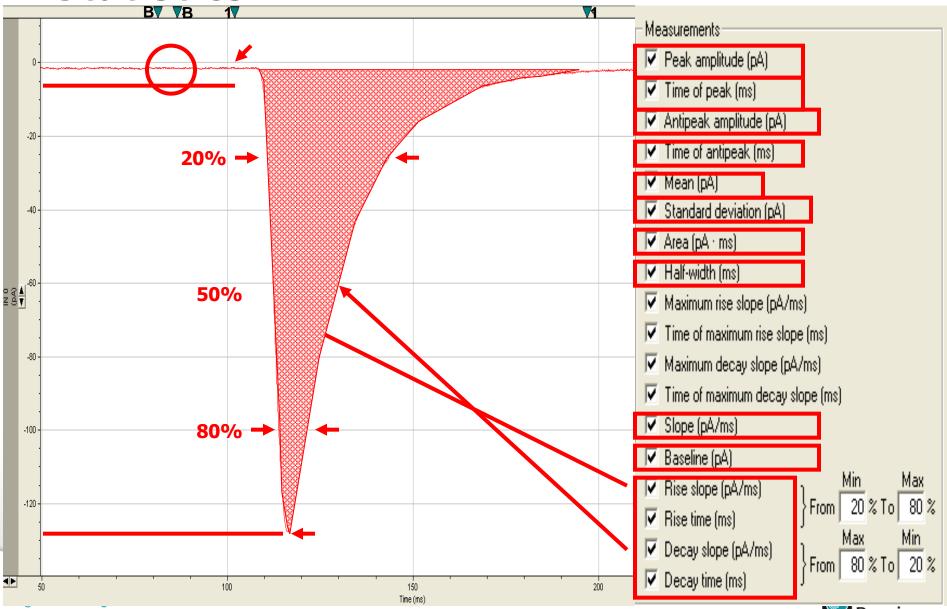
- Display the frequency of threshold-crossing
- Mean open (ms)
 - Display the average time that the signal is above threshold.
- Mean closed (ms)
 - Display the average time that the signal is below threshold.

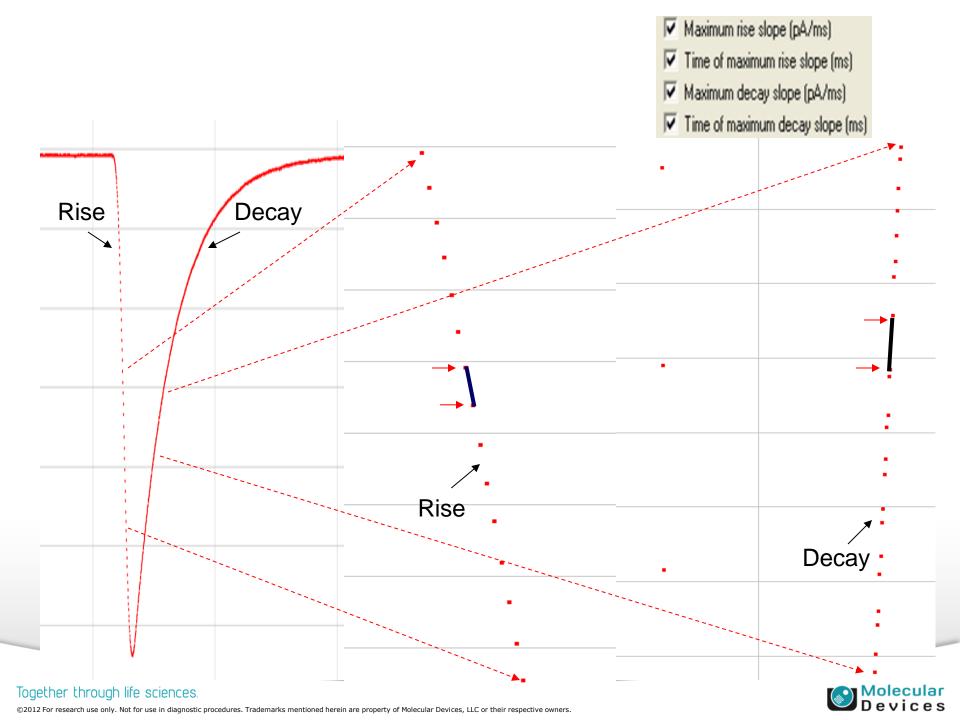
Together through life sciences.

Threshold-Based Statistics



Statistics


🖻 Edit Protocol - (untitled)	×	
Mode/Rate Inputs Outputs Trigger Statistics ✓ Shape Statistics ✓ Analog IN Signal IN 0 ✓ ✓ Positive-going Selected signals: Measurements ✓ Negative-going Selected signals: ✓ ✓ Peak amplitude (pA) ✓ No ✓ Time of peak (ms) ✓ Absolute ✓ Time of antipeak (ms) Baseline Region Cursor Region ✓ Standard deviation (pA) ✓ Area (pA · ms)		
From (ms): 0 => sample 1 + Half-width (ms) To (ms): 11.1 => sample 112 + Maximum rise slope (pA/ms) Time of maximum rise slope (ms) + Maximum decay slope (pA/ms)		
✓ Search Region 1 ↓ Time of maximum decay slope (ms) Range: Cursor Region ✓ Slope (pA/ms) From (ms): 22.2 => sample 223 + Rise slope (pA/ms) To (ms): 33.3 => sample 334 Decay slope (pA/ms) from 10 % to 90 % Locay time (ms) 30.8 + Decay time (ms) from 90 % to 10 %		
Smoothing window (samples): 1 + Clear after saving		
OK Cancel Help Acquisition mode: Episodic stimulation Update Preview		



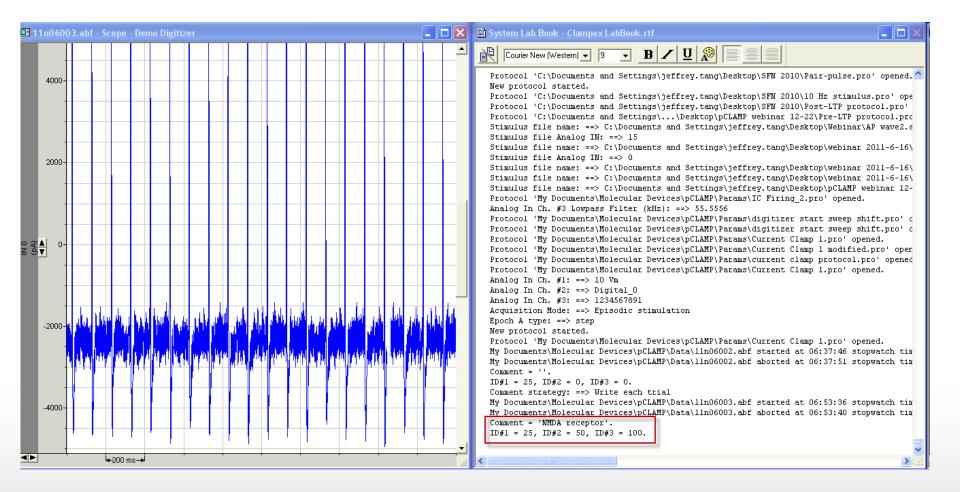
Devices

Q & A

- How many search regions can be applied during data acquisition?
- How?

Clampex - Scope - Demo Digitizer
e Edit Acquire View Configure Tools Window Help
j
1456 INBA CALE FAR FI
$\sum_{c_1} C_{c_2} C_{c_3} C_{c_4} C_{c_5} C_{c_6} C_{c_7} C_{c_8} C_{A1} C_{A2} C_{A3} C_{A3}$
Episodic md O (mV) Scope - Demo Digitizer
md 1 (mV) 10000 (0
<u>md 2 (nA)</u> 8000-

Comments

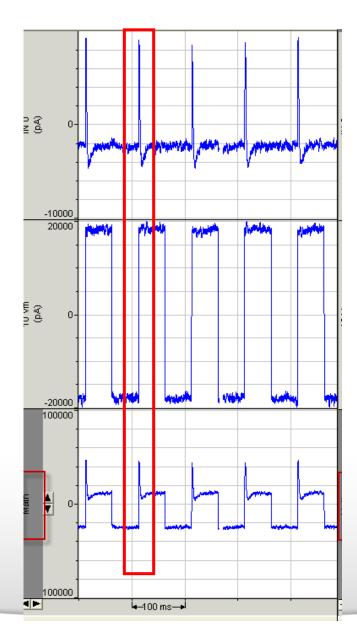

Edit Protocol - Current Clamp 1.pro	×
Mode/Rate Inputs Outputs Trigger Statistics Comments ✓ Comments ✓ Comments ✓ ✓ Write each trial ✓ Prompt each trial ✓ Information Numeric identifier #1 (e.g. temperature): 25 ✓ Numeric identifier #2 (e.g. pressure): 50 ✓ Numeric identifier #3 (e.g. concentration): 100 ✓	
File comment: NMDA receptor	
Amplifier mode: Voltage Clamp	

- The comments can be written automatically to every data file
- The comments are stored with data file information in the file header, viewed from <u>File / Properties</u>, and can also be displayed in the <u>Data File Index</u>.

Comments

Together through life sciences.

Math


Edit Protocol - Curre Mode/Rate Inputs Outp Math Signal Data Source Analog IN #A: IN 0	uts Trigger Statistics Comments Math Waveform Stimulus	
Equation © General purpose Operator © Addition © Subtraction © Multiplication © Division	C Ratio dyes Constants K1: 1 K3: 1 K4: 0 K5: 0 K6: 0	
Yielding:	+K2) <op>(K3*#B+K4) +0)+(1*10Vm+0)</op>	

- Allows arithmetic calculation between two analog input signals
- Calculate on-line ratios, products, sums and differences.

Together through life sciences.

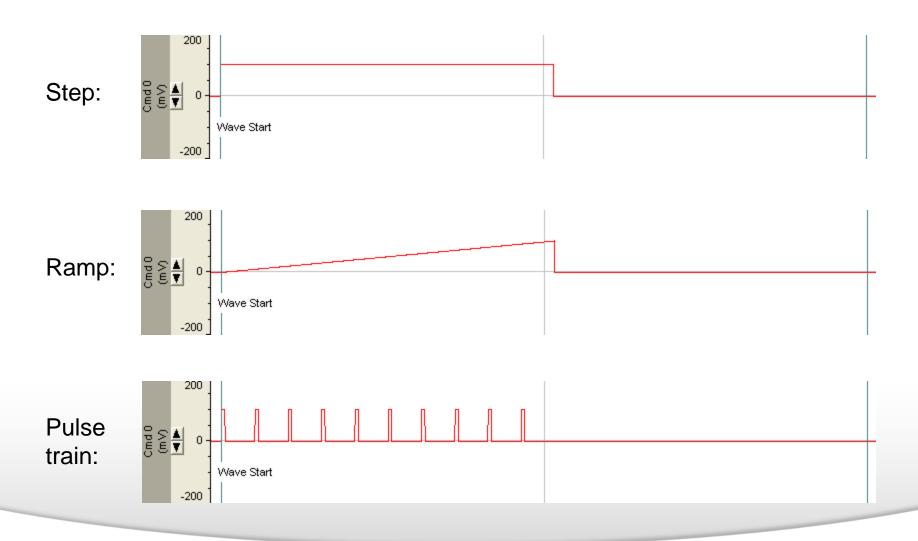
Math

Together through life sciences.

Waveform

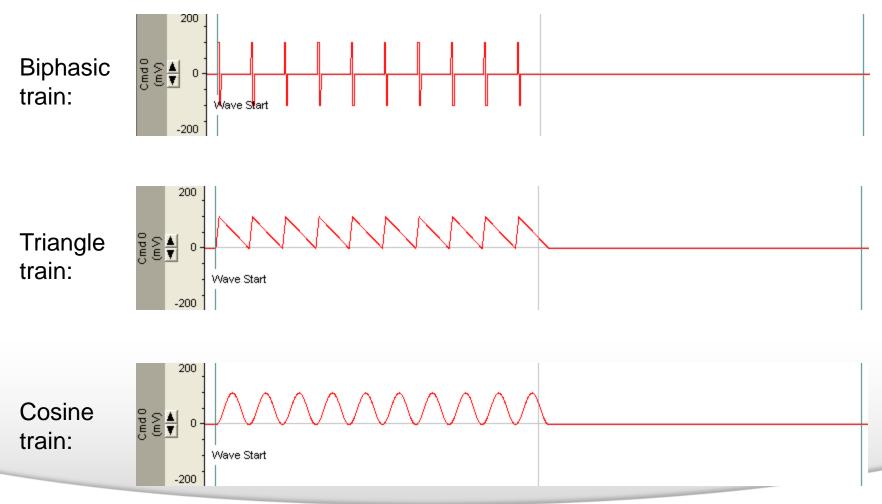
X dit Protocol - (untitled) Mode/Rate Inputs Outputs Trigger Statistics Comments Math Waveform Stimulus Waveform Analog OUT: Cmd 0 Info - Analog Waveform Digital Outputs 🖲 Epochs 🔘 Stimulus file Use holding Intersweep holding level: 100 ms Epoch Description В Α 112 mV Step Off Туре Sample rate 92 mV Fast Fast First level (mV) 112 72 mV -20 Delta level (mV) 100 First duration (ms) Delta duration (ms) 0 Digital bit pattern (#3-0) Digital bit pattern (#7-4) 0000 Train rate (Hz) Pulse width (ms) 0 mV Number of sweeps = 10 Stimulus File.. Summary Channel #2 Channel #1 Cha Channel #0 Acquisition mode: ΟK Help Update Preview Cancel Episodic stimulation

Together through life sciences.


Epochs

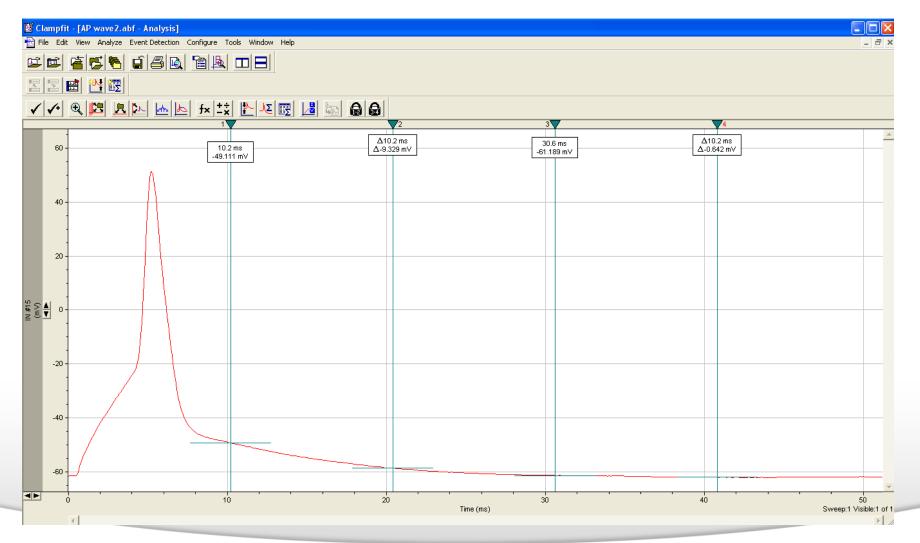
dit Protocol - (untitle	d)					
Mode/Rate Inputs Out	puts Trigger Statistics					
Waveform Analog OUT: Cmd 0 Info Analog Waveform Epochs O Stimulus file Intersweep holding level: Use holding						
	A B C					
Type Sample rate	Step Off Off					
First level (mV)	Off					
Delta level (mV)	√ Step Ramp					
First duration (ms)	Pulse train					
Delta duration (ms)						
Digital bit pattern (#3-0)	Triangle train					
Digital bit pattern (#7-4)	Cosine train					
Train rate (Hz) Pulse width (ms)						

Together through life sciences.


Default waveforms

Together through life sciences.

Default waveforms


Together through life sciences.

lit Protocol - (untitled		inin Í Comu	nts Math	. Wa	eform S			
Mode/Rate Inputs Outp Waveform Analog OUT: ✓ Analog Waveform ← Epochs ← Stimu Intersweep holding lev	Cmd 0In	ío	⊡ Digita ⊡ A	l Outputs	n logic for		ins holding	nfo
Epoch Description Type Sample rate First level (mV) Delta level (mV) First duration (ms) Delta duration (ms) Digital bit pattern (#3-0) Digital bit pattern (#7-4) Train rate (Hz) Pulse width (ms)	A B			F	G	H		
Number of sweeps = 10 Stimulus File Summary Channel #0 Channel #1	file not selected.	Alloc annel #3	ated time:		aveforms	∏ Alter ■	nate Digiti	al Outputs

Together through life sciences.

Together through life sciences.

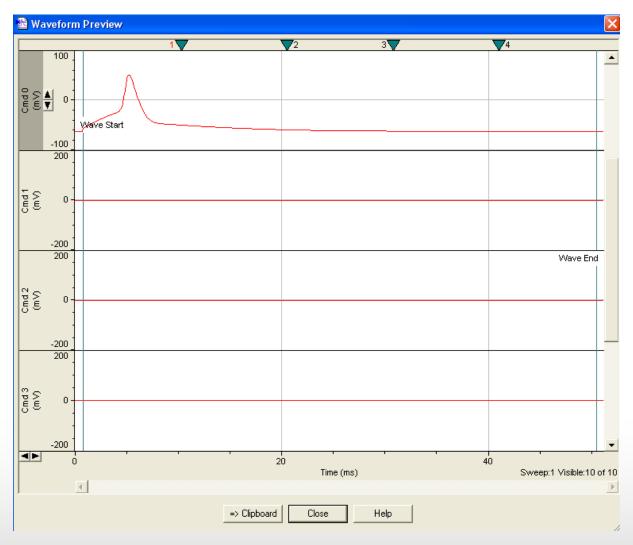
Edit Protocol - (untitled)
fode/Rate Inputs Outputs Trigger Statistics Comments Math Waveform Stimulus
Waveform Analog OUT: Cmd 0 Info Analog Waveform Digital Outputs Epochs Stimulus file Intersweep holding level: Use holding
Epoch Description A B C D E F G H I J
Type Sample rate
First level (mV)
Delta level (mV)
First duration (ms)
Delta duration (ms)
Digital bit pattern (#3-0)
Digital bit pattern (#7-4)
Train rate (Hz)
Pulse width (ms)
Number of sweeps = 10 Allocated time:
Stimulus File Stimulus file not selected.
Summary
Channel #0 Channel #1 Channel #2 Channel #3 Alternate Waveforms Alternate Digital Outputs
OK Cancel Help Acquisition mode: Episodic stimulation Update Preview

Together through life sciences.

Stimulus File		? 🔀
Look in: 🗀 2010 Biophysic	al Meeting 📃 🗲 🛍) 💣 🎟 -
🖺 AP wave2.abf		
File name: AP wave2.abf		ОК
Files of type: Axon Binary Fi	ile (*.abf)	Cancel
Signal Specifications Use Analog IN signal:	IN #15 (ADC #15)	Help
Use sweep number (1-1):	All Sweeps 🗨	
Gain factor:	1	
Offset (mV):	0	

Together through life sciences.

🚵 Edit Protocol - (untitled)


Waveform Analog OUT: → Analog Waveform → C Epochs ⓒ Stimu Intersweep holding lev	lus file	li se holdin	nfo]	M A	I Outputs ctive high weep bit	-	 ains holding	Info
Epoch Description Type Sample rate First level (mV) Delta level (mV) First duration (ms) Delta duration (ms) Digital bit pattern (#3-0) Digital bit pattern (#7-4)	A	B				F	G		
		wave2.ab hannel # el #2 C		eeps,	ed time:	,		mata Dia	yital Outputs

©2012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of Molecular Devices, LLC or their respective owners.

Action Potential Waveform

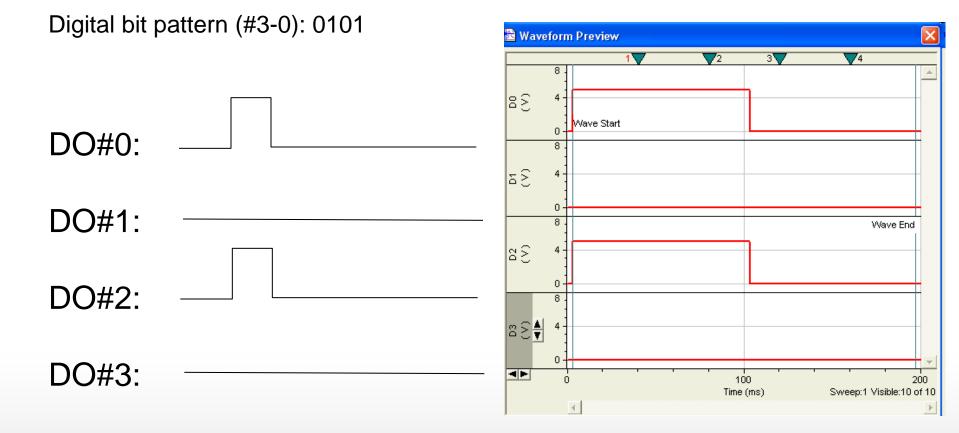
Digital Outputs

Edit Protocol - (untitled)

Mode/Rate Inputs Outputs Trigger Statistics Comments Math Waveform Stimulus Waveform Analog OUT: Cmd 0 Info Info Info Info ✓ Analog Waveform ✓ Digital Outputs Info ✓ Epochs Stimulus file ✓ Active high logic for digital trains Info Intersweep holding level: Use holding ✓ Intersweep bit pattern: Use holding ✓										
Epoch Description	A	В		D	E	F	G	Н		J
Туре	Step	Off								
Sample rate	Fast									
First level (mV)	112	0	0	0	0	0	0	0	0	0
Delta level (mV)	-20	0 🖊	0	0	0	0	0	0	0	0
First duration (ms)	100	2	0	0	0	0	0	0	0	0
Delta duration (ms)	0 🕨	0	0	0	0	0	0	0	0	0
Digital bit pattern (#3-0)	1111	0000	0000	0000	0000	0000	0000	0000	0000	0000
Digital bit pattern (#7-4)	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
Train rate (Hz)	0	0	0	0	0	0	0	0	0	0
Pulse width (ms)	0	0	0	0	0	0	0	0	0	0
Number of sweeps = 10 Allocated time: 106.2 of 200 ms Stimulus File Final level -68.00 mV First duration 100.00 ms (1000 samples) Summary										

Together through life sciences.

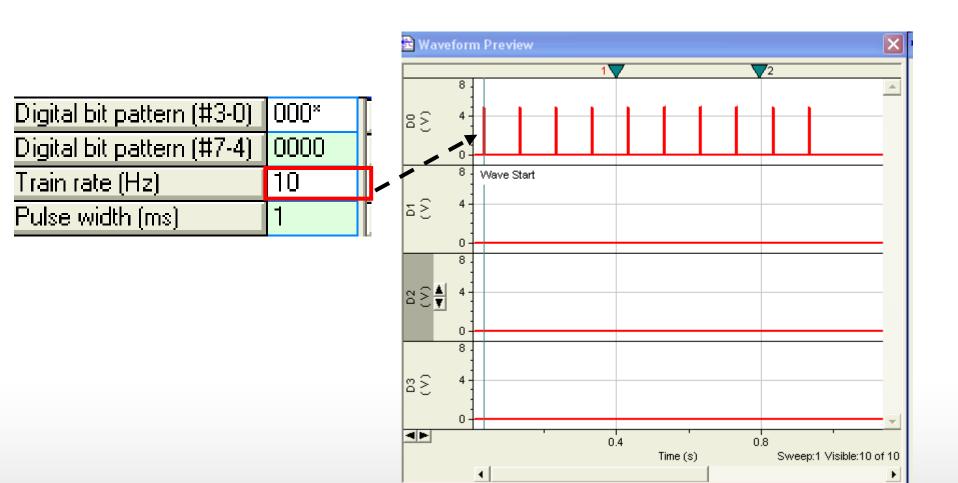
Digital Bit Pattern


Digital bit pattern (#3-0): 0101 $\int_{D0\#3 D0\#2} \int_{D0\#1 D0\#0} \int_{D0\#0} \int_{D0\#1 D0\#0} \int_{D0\#0} \int$

1→ High, single TTL (5V) 0→ Low, No single TTL (5V) an asterisk,*→ A pulse train of TTL (5V)

Together through life sciences.

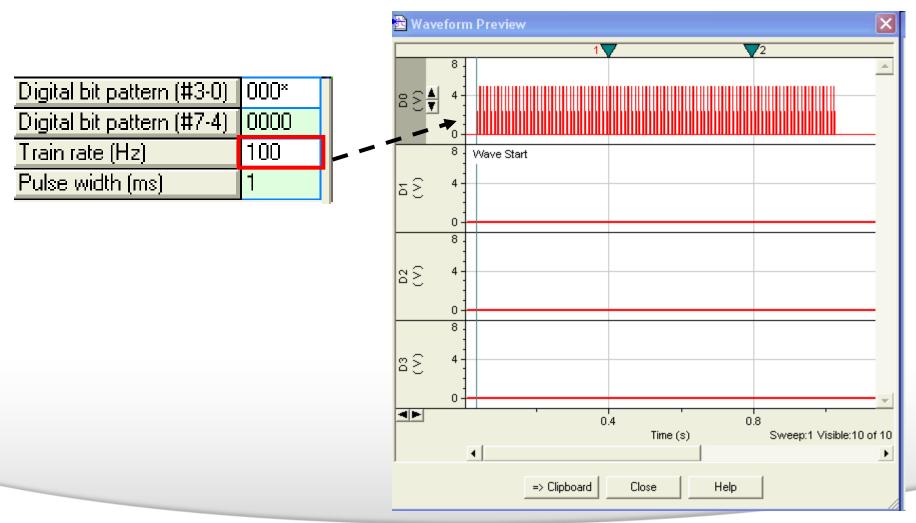
Digital Bit Pattern---Single Pulse



©2012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of Molecular Devices, LLC or their respective owners.

Together through life sciences.

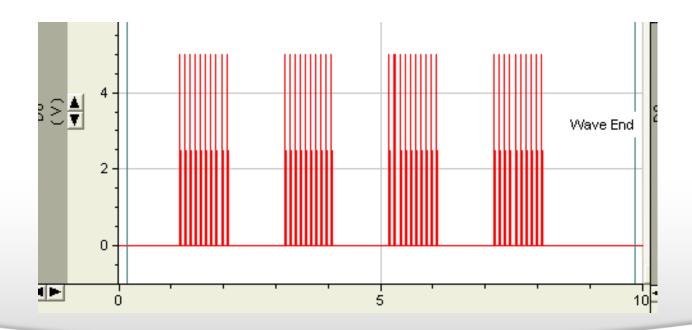
Digital Bit Pattern---Train Pulse



©2012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of Molecular Devices, LLC or their respective owners.

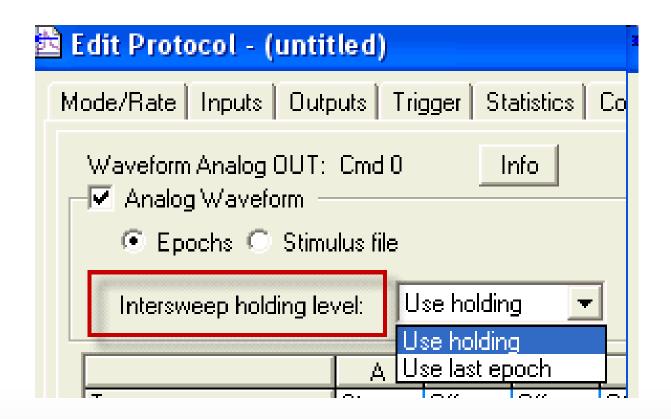
Together through life sciences.

Digital Bit Pattern---Train Pulse

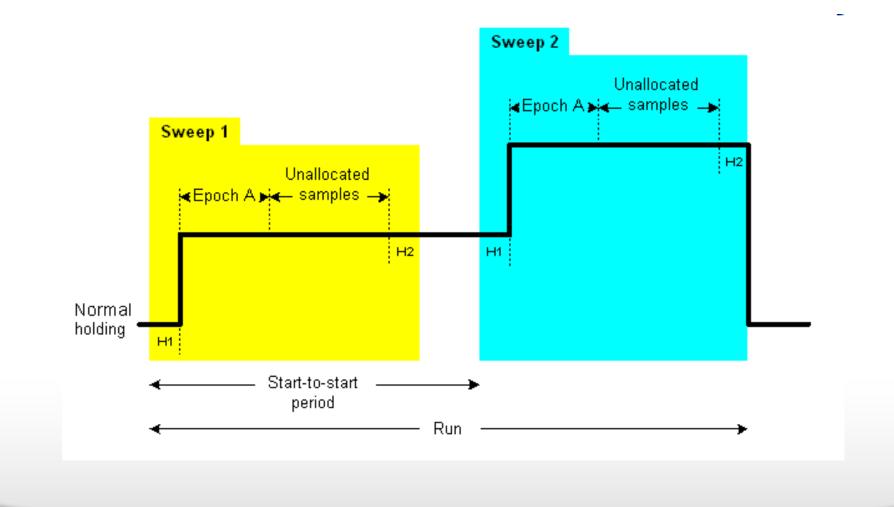


Together through life sciences.

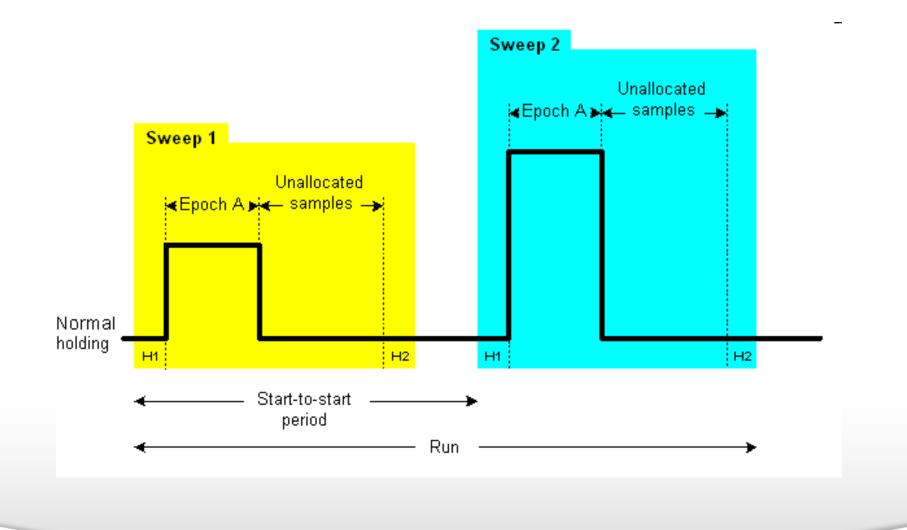
Digital Bit Pattern


	A	В	С	D	E	F	G	Н		J
Туре	Step	Pulse	Step	Pulse	Step	Pulse	Step	Pulse	Off	Off
Sample rate	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast
First level (mV)	0	0	0	0	0	0	0	0	0	0
Delta level (mV)	0	0	0	0	0	0	0	0	0	0
First duration (ms)	1000	1000	1000	1000	1000	1000	1000	1000	0	0
Delta duration (ms)	0	0	0	0	0	0	0	0	0	0
Digital bit pattern (#3-0)	0000	000×	0000	000×	0000	000×	0000	000×	0000	0000
Digital bit pattern (#7-4)	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
Train rate (Hz)	0	10	0	10	0	10	0	10	0	0
Pulse width (ms)	0	1	0	1	0	1	0	1	0	0
						_				

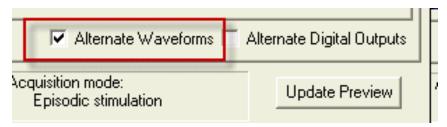
Together through life sciences.

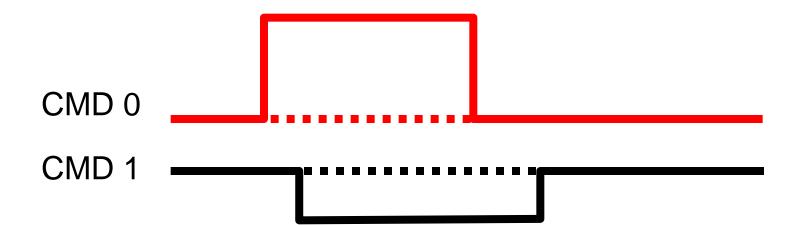

Intersweep Holding Level

Together through life sciences.


Intersweep Holding Level---Use last epoch

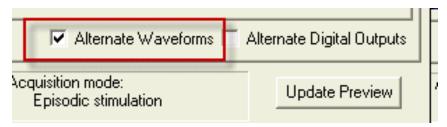
Together through life sciences.

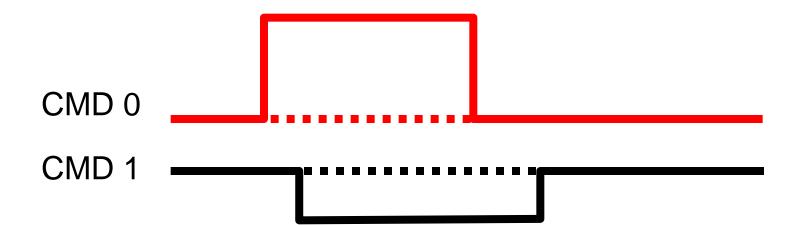

Intersweep Holding Level---Use Holding



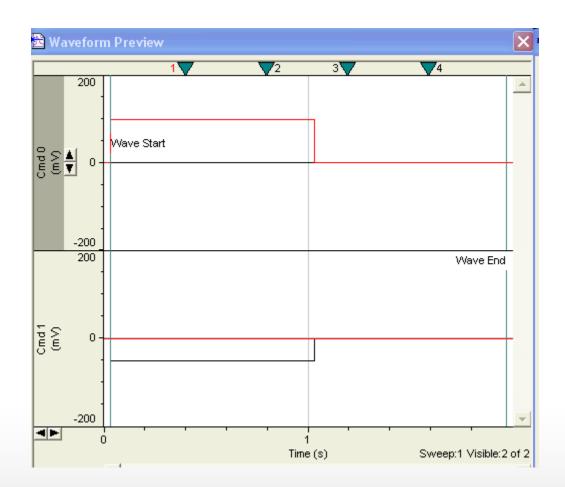
Together through life sciences.

Alternative Waveform

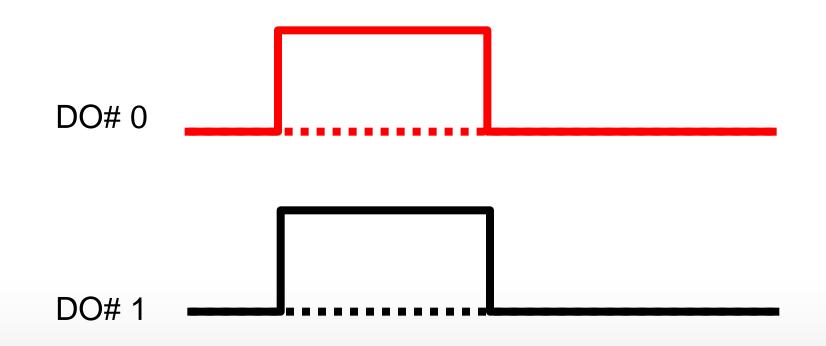




Alternative Waveform

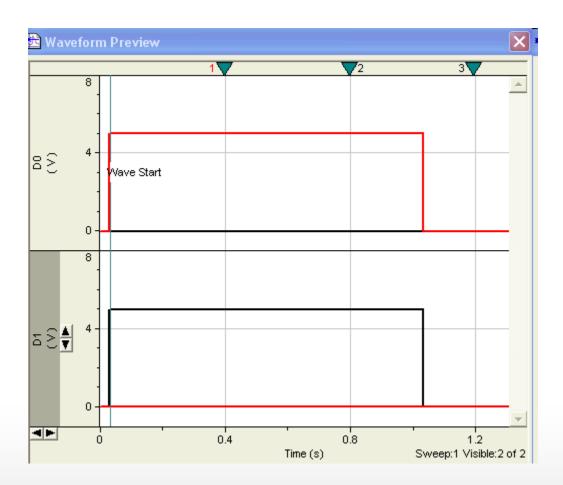


Alternative Waveform



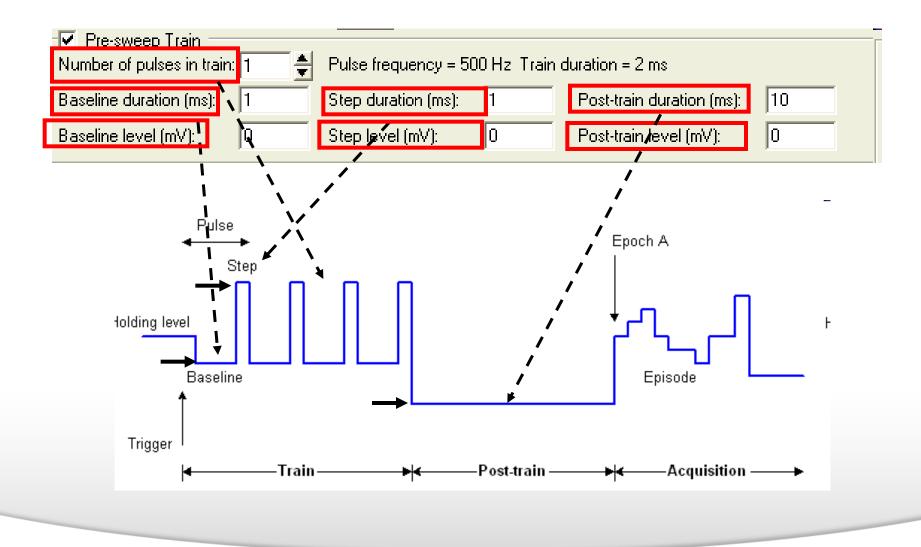
Together through life sciences.

Alternative Digital Outputs



Together through life sciences.

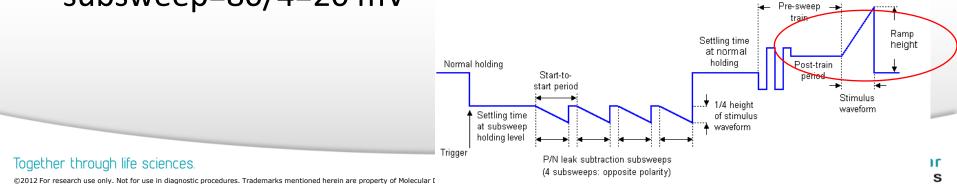
Alternative Digital Outputs



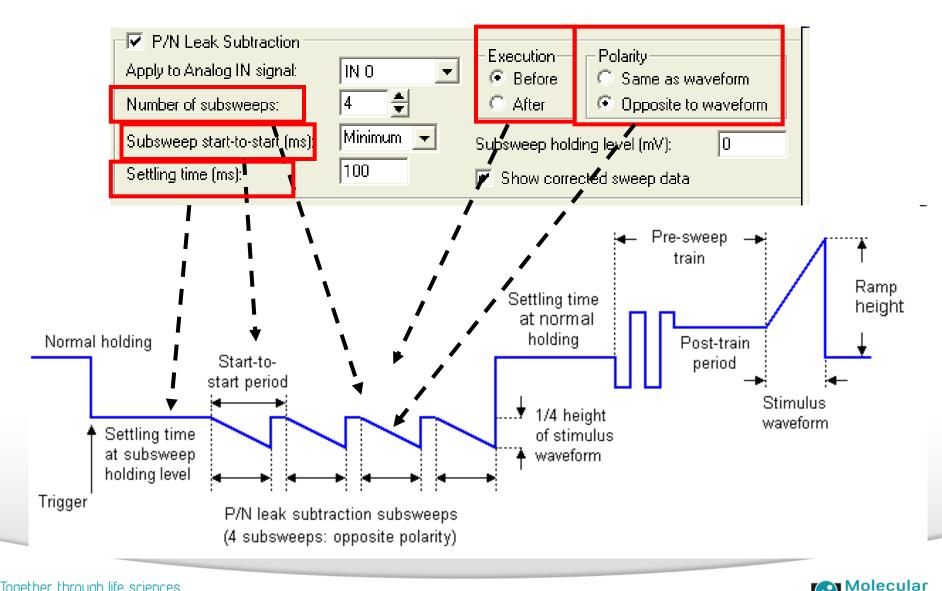
Pre-sweep Train

- A pre-sweep train consists of repeated square waveform pulses
- Conditioning trains
- No acquisition occurs

Pre-sweep Train



Together through life sciences.

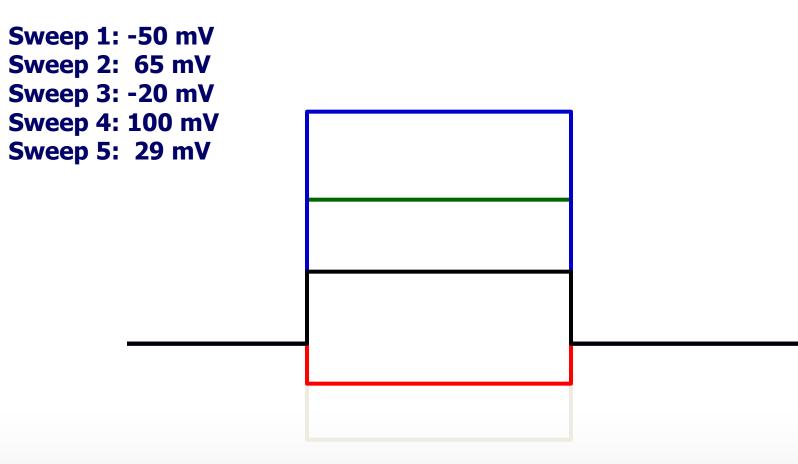


P/N Leak Subtraction

- Leak subtraction corrects for the passive responses by applying test subsweeps before or after the main stimulus waveform
- The technique is called P/N subtraction, in which N subsweeps each 1/Nth of the amplitude of the main stimulus waveform are applied.
- Example: Number of subsweep (N)=4, the stimulus waveform (P)= 80 mV, the pulse of each subsweep=80/4=20 mV

P/N Leak Subtraction

evices


Toaether through life sciences.

User List

- Customizing output features
 - Analog
 - digital
- Overrides the generalized settings made elsewhere in the Protocol Editor.

User List---Holding Level

You can set the arbitrary delta values for the waveform holding levels.


Together through life sciences.

User List---Epoch Duration

Sweep 1: 22 ms Sweep 2: 44 ms Sweep 3: 100 ms Sweep 4: 75 ms

You can set the arbitrary delta values for the waveform sweep durations.

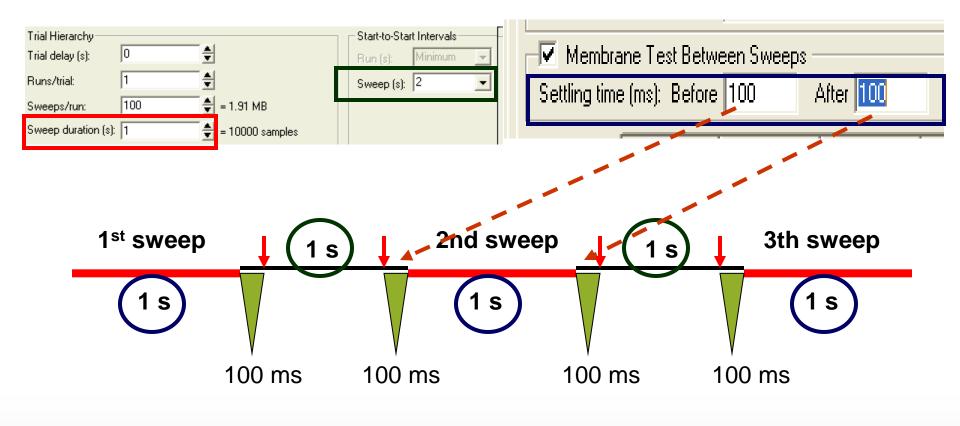
Together through life sciences.

User List---Change in Parameters

🔽 User List		
Parameter to change:	Number of pulses in pre-sweep train	-
List of parameter values:	Number of pulses in pre-sweep train Pre-sweep train baseline duration (ms)	~
	Pre-sweep train baseline level	_
Membrane Test Betwe	Pre-sweep train step duration (ms) Pre-sweep train step level	
Settling time (ms): Before	Post-train duration (pre-sweep train) (ms)	24
	Post-train level (pre-sweep train)	
Channel #0 Channel #1	Channel #2 Channel #3	

- Epoch A–J level
- Epoch A–J duration
- Epoch A–J digital pattern
- Epoch A–J train period
- Epoch A–J train pulse width
- Time between sweep starts (s)
- Inactive analog OUT holding level
- Digital intersweep holding level
- Number of P/N subsweeps

- Number of pulses in pre-sweep train
- Pre-sweep train baseline duration (ms)
- Pre-sweep train baseline level
- Pre-sweep train step duration (ms)
- Pre-sweep train step level
- Post-train duration (pre-sweep train) (ms)
- Post-train level (pre-sweep train)



Together through life sciences.

Lists of parameter values

- The list of values for the <u>A Epoch level</u> might be:
 -50, 65, -20, 100, 29
- The list of values for the <u>A Epoch duration</u> might be:
 22, 44, 100, 75

Membrane Test Between Sweeps

= Membrane test

Together through life sciences.

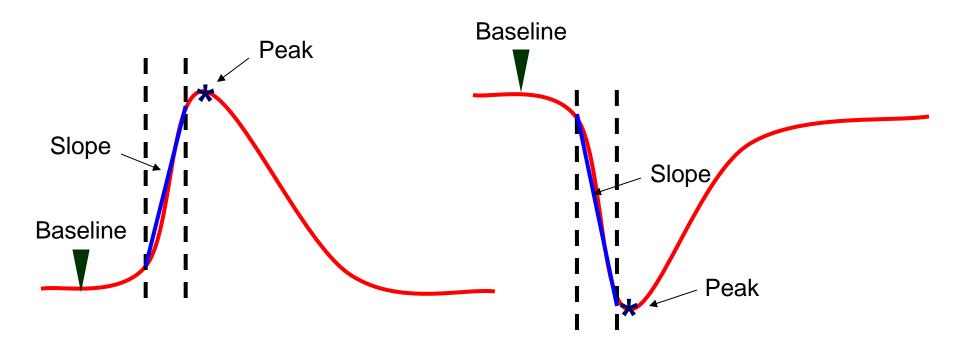
pCLAMPTM 10 data acquisition software: Key features review

Together through life sciences.

Key features of Clampex 10

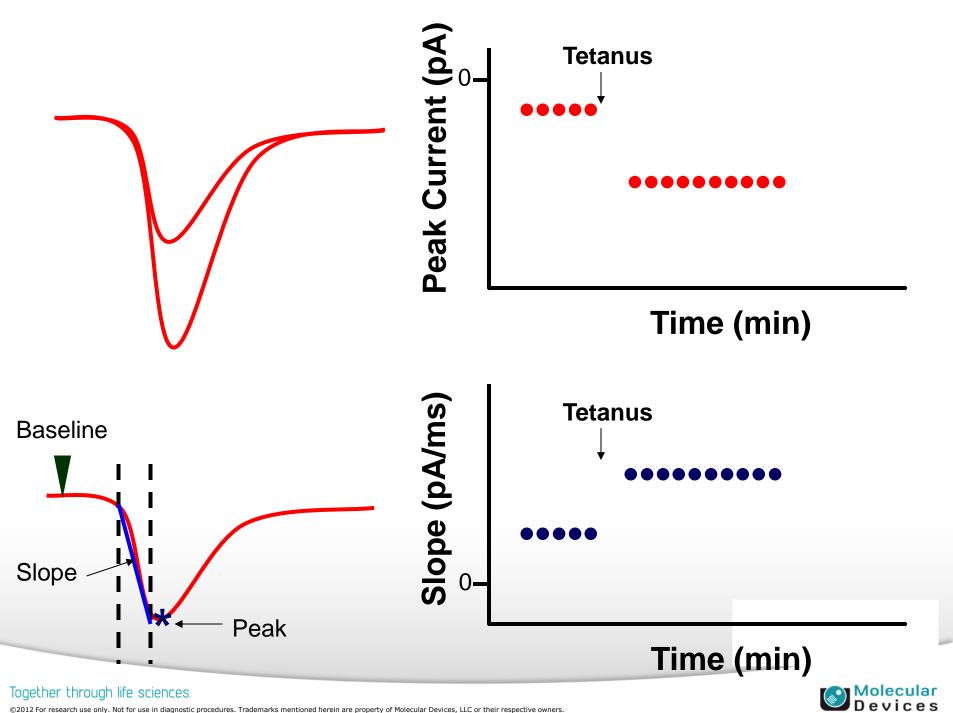
- Online Statistics
- Sequencing keys
- User list
- Membrane test between sweep
- Protocol editor
- LTP assistant
- Stimulus file
- Triggering external devices

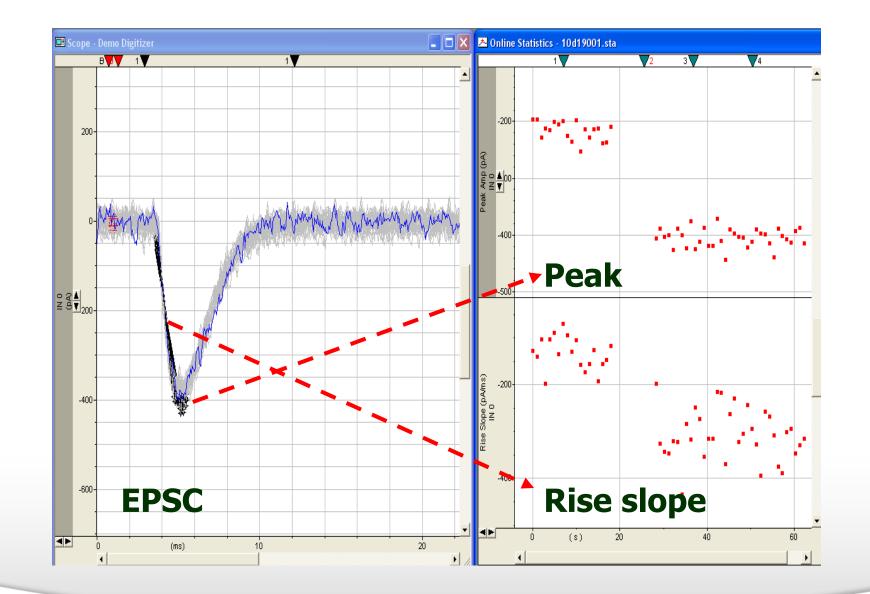
Together through life sciences.


Online Statistics

- Measure various parameters of evoked events such as peaks, slopes, areas, and rise time
- Available in episodic and oscilloscope modes
- Up to 8 search regions

Outward signal

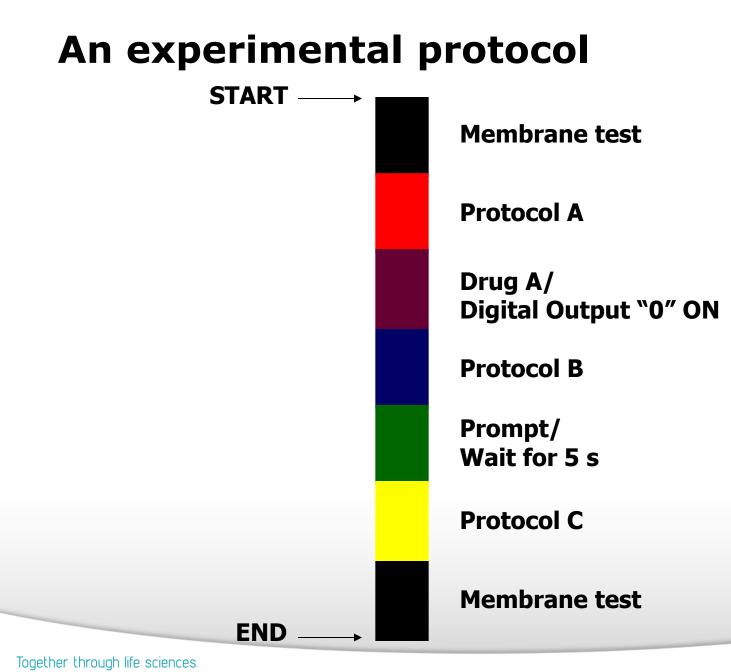

Inward signal



Example: Excitatory postsynaptic potential (EPSP) Example: Excitatory postsynaptic current (EPSC) Population spikes Field EPSP

Together through life sciences.

🛜 Clampex - 10d18005.abf - Scope	- Demo Digitizer
File Edit Acquire View Configure Tools	; Window Help
and the second	Window Help
	OK Cancel Help Acquisition mode: Episodic stimulation Update Preview

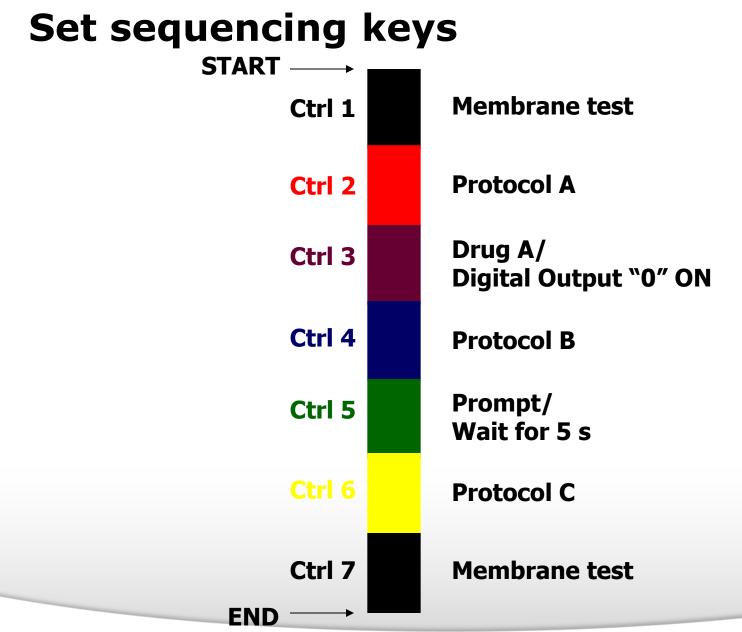


Together through life sciences.

 Clampex - 10d18005.abf - Scope - D File Edit Acquire View Configure Tools V New Protocol Open Protocol Save Protocol Save Protocol As 	
Edit Protocol Waveform Preview Export protocol (pCLAMP 9 compa Cmd 0 (mV 0 Cmd 1 (nA 0 0 Pause-View	★ Edit Protocol - Post-LTP and Memb.pro Mode/Rate Inputs Outputs Trigger Statistics ✓ Analog IN Signal IN 0 ✓ Measurements ✓ Positive-going Selected signals: Measurements ④ Ø Peak amplitude (pA) Time of peak (ms) ● Absolute Time of peak (ms) Baseline Region Cursor Region Mean (pA) From (ms): 0.75 => sample 16 To (ms): 1.6 => sample 33 ✓ Search Region 1 Ime of maximum rise slope (ms) + Maximum decay slope (ms) Time of maximum decay slope (ms) + Baseline (pA) Slope (pA/ms) ✓ Search Region ✓ Baseline (pA) From (ms): 1.6 Slope (pA/ms) Time of maximum decay slope (ms) Time of maximum decay slope (ms) • Baseline (pA) Baseline (pA)
Click "Help" for feature description	From (ms): 3.15 => sample 64 + Rise time (ms) } from 10 % to 90 % To (ms): 9.55 => sample 192 + Decay slope (pA/ms) + Max Min Smoothing window (samples): 1 + Decay time (ms) } from 90 % to 10 % OK Cancel Help Acquisition mode: Update Preview

Sequencing Keys

- Sequencing keys command allows you associate events, or a sequence of event, with a keystroke.
 - Set various digital outputs
 - Change the holding levels
 - Insert a comment tag
 - Start a Membrane Test
 - Load or run a protocol
 - Display a prompt
- Use sequencing keys to link one event to another, and run an experiment in an "automated" fashion.

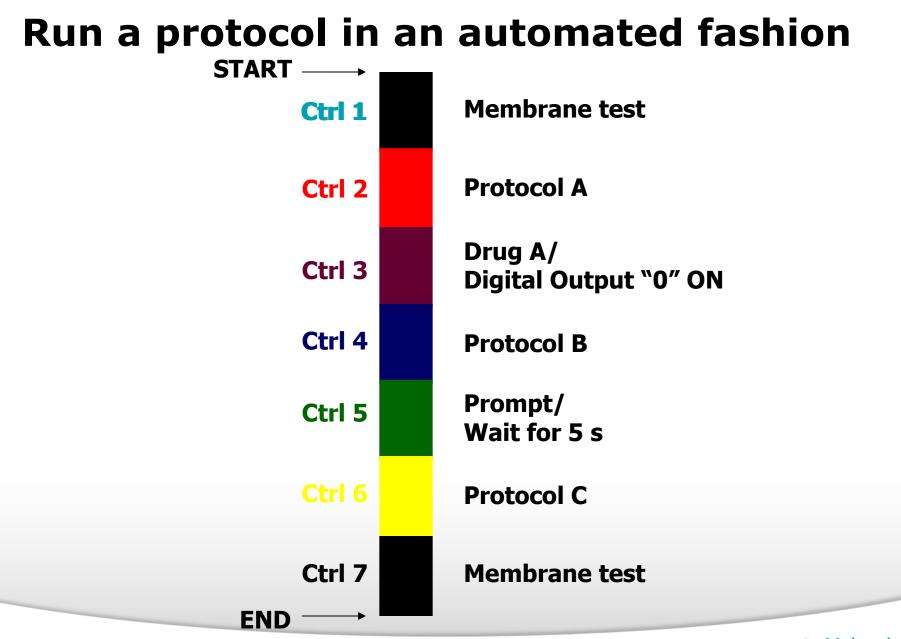


Molecular Devices

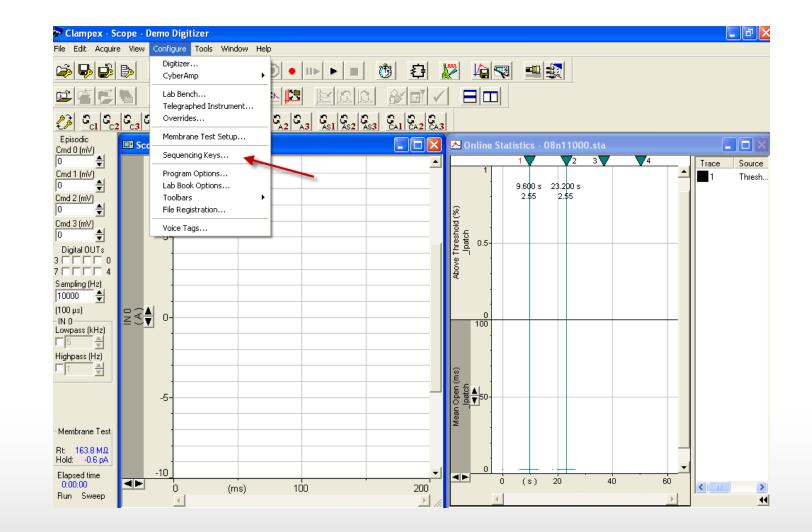
Sequencing Keys

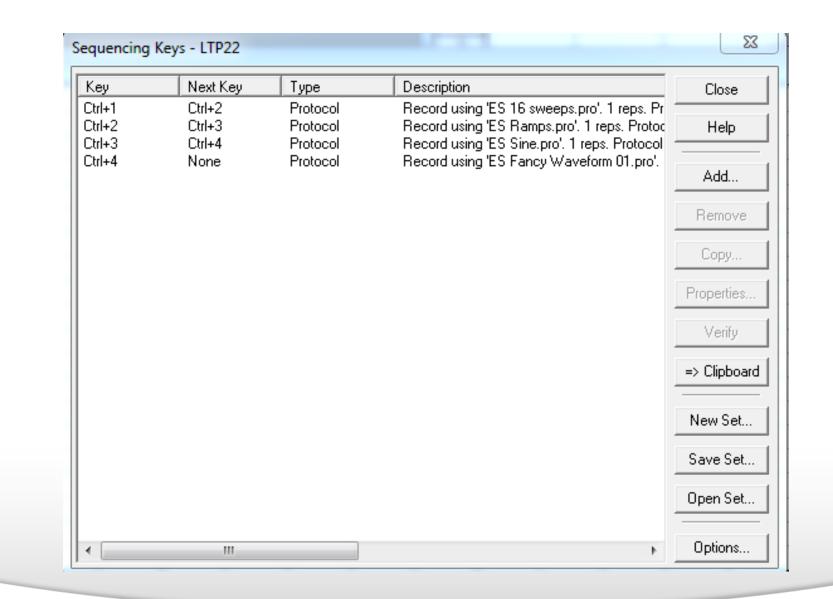
- The key strokes and tool button identifiers used for sequencing keys are:
 - <Alt + 0> through <Alt + 9> (i.e. hold down the Alt key and press the relevant numeral)
 - <Alt + Shift + 0> through <Alt + Shift + 9>
 - <Ctrl + 0> through <Ctrl + 9>
 - <Ctrl + Alt + 0> through <Ctrl + Alt + 9>
 - <Ctrl + Shift + 0> through <Ctrl + Shift + 9>
- 50 sequencing keys can be triggered in one time.

Together through life sciences.



Sequencing Keys


 Only the key for the first element needs to be triggered to start off the entire sequence.



Together through life sciences.

Together through life sciences.

User List

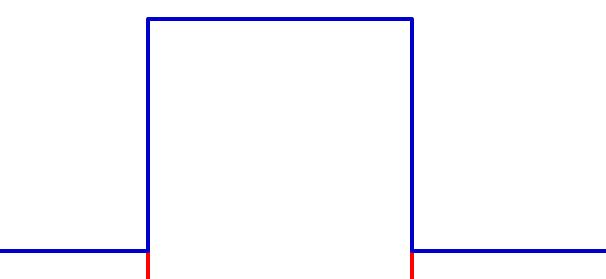
- Provide a way of customizing one of a range of analog and digital output features.
- It overrides the generalized settings made elsewhere in the Protocol Editor.

User List

- With User List you can select one of a range of parameters offered, to configure on a sweep-bysweep basis.
- This function allows you to set specific values for each sweep in a run. You can also set a sequence of values and have this repeat.

Change in Epoch holding levels

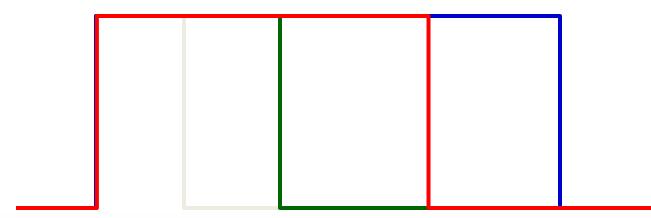
Sweep 1: -50 mV Sweep 2: 65 mV Sweep 3: -20 mV Sweep 4: 100 mV Sweep 5: 29 mV


You can set the arbitrary delta values for the waveform holding levels.

Together through life sciences.

Change in Epoch holding levels

Sweep 1: -20 mV Sweep 2: 100 mV Repeat...



Change in Epoch durations

Sweep 1: 22 ms Sweep 2: 44 ms Sweep 3: 100 ms Sweep 4: 75 ms

You can set the arbitrary delta values for the waveform sweep durations.

Together through life sciences.

Change in Epoch durations

Sweep 1: 22 ms Sweep 2: 75 ms Repeat...

Molecular Devices

Parameter to Change

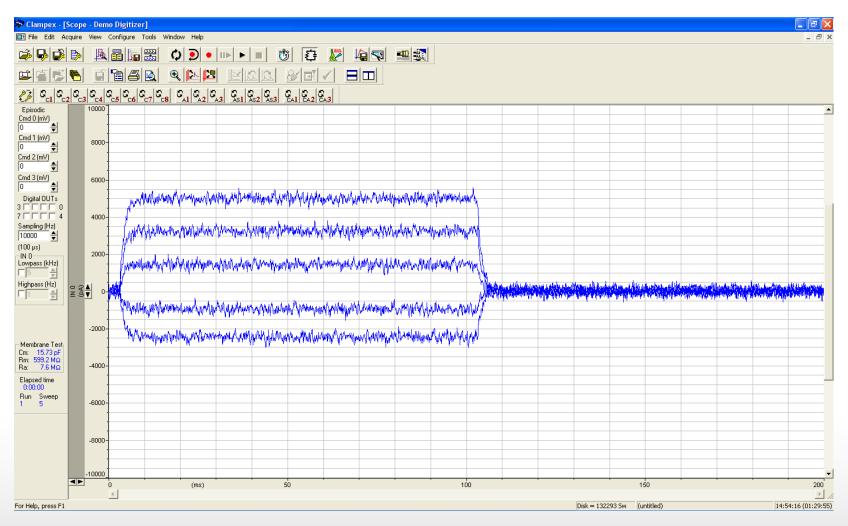
- Epoch A–J level
- Epoch A–J duration
- Epoch A–J digital pattern
- Epoch A–J train period
- Epoch A–J train pulse width
- Time between sweep starts (s)
- Inactive analog OUT holding level
- Digital intersweep holding level
- Number of P/N subsweeps

- Number of pulses in pre-sweep train
- Pre-sweep train baseline duration (ms)
- Pre-sweep train baseline level
- Pre-sweep train step duration (ms)
- Pre-sweep train step level
- Post-train duration (pre-sweep train) (ms)
- Post-train level (pre-sweep train)

Together through life sciences.

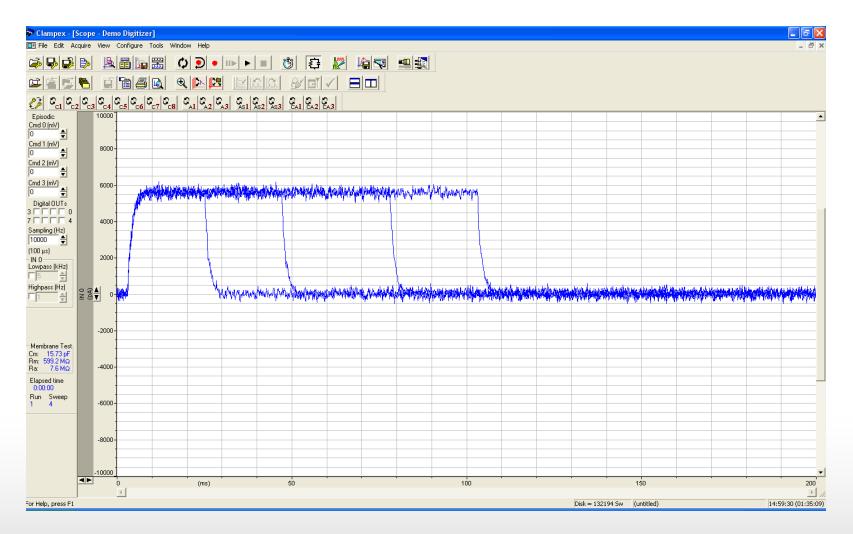
List of parameter values: Number of pulses in pre-sweep train Pre-sweep train baseline duration (ms) Pre-sweep train step duration (ms) Pre-sweep train step duration (ms) Pre-sweep train step level Settling time (ms): Before Post-train duration (pre-sweep train) (ms) Post-train level (pre-sweep train)	ode/Rate Inputs Out	tputs Trigger Statistics Comments Math Waveform Stimulus	
Number of pulses in train: Pulse frequency = 500 Hz Train duration = n/a Baseline duration (ms): Step duration (ms): Post-train duration (ms): Post-train level (mV): Post-train level (mS) Post-train level (mV): Post-train level (mV): Post-train level (mV): Post-train level (mV): Post-tra		: Cmd 0 Info	
Baseline level (mV): 0 Step level (mV): 0 Post-train level (mV): 0 P/N Leak Subtraction Apply to Analog IN signal: IN 0 Execution Polarity Same as waveform Number of subsweeps: 4 Image: Composite to waveform Opposite to waveform Opposite to waveform Subsweep start-to-start (ms): Minimum Subsweep holding level (mV): 0 Settling time (ms): 100 Image: Show corrected sweep data Ist of parameter values: Number of pulses in pre-sweep train Pre-sweep train baseline duration (ms) Pre-sweep train baseline level Pre-sweep train baseline level Pre-sweep train step level Setting time (ms): Before Image: Pre-sweep train step level Pre-sweep train baseline level Pre-sweep train step level Pre-sweep train step level Setting time (ms): Before Post-train duration (pre-sweep train) Image: Pre-sweep train level (pre-sweep train)		n: 1 🚔 Pulse frequency = 500 Hz Train duration = n/a	
 P/N Leak Subtraction Apply to Analog IN signal: IN 0 IN 0	Baseline duration (ms):	1 Step duration (ms): 1 Post-train duration (ms): 10	
Apply to Analog IN signal: IN 0 Number of subsweeps: 4 Subsweep start-to-start (ms): Minimum Subsweep holding level (mV): 0 Settling time (ms): 100 Settling time (ms): 100 Show corrected sweep data User List Parameter to change: Number of pulses in pre-sweep train Parameter values: Number of pulses in pre-sweep train Pre-sweep train baseline duration (ms) Pre-sweep train baseline level Pre-sweep train step level Settling time (ms): Before Polarity Repeat Pre-sweep train step level Settling time (ms): Before Post-train duration (pre-sweep train) (ms) Pre-sweep train level (pre-sweep train) (ms)	Baseline level (mV):	0 Step level (mV): 0 Post-train level (mV): 0	
Apply to Analog IN signal: IN 0 Setting time (ms): Minimum Subsweep holding level (mV): 0 Setting time (ms): 100 Show corrected sweep data User List Parameter to change: Number of pulses in pre-sweep train List of parameter values: Number of pulses in pre-sweep train Pre-sweep train baseline duration (ms) Pre-sweep train step duration (ms) Pre-sweep train step level Setting time (ms): Before Post-train duration (pre-sweep train) Post-train level (pre-sweep train) Post-train level (pre-sweep train)	P/N Leak Subtraction		
Subsweep start-to-start (ms): Settling time (ms): User List Parameter to change: List of parameter values: Mumber of pulses in pre-sweep train Pre-sweep train baseline duration (ms) Pre-sweep train baseline level Pre-sweep train step duration (ms) Pre-sweep train step level Settling time (ms): Before Settling time (ms): Before Post-train duration (pre-sweep train) Pre-sweep train (ms) Pre-sweep train step level Post-train duration (pre-sweep train) Pre-sweep train (ms) Pre-sweep train (ms) Pre-sweep train step level Post-train duration (pre-sweep train) Pre-sweep train (ms) Pre-sweep trai	Apply to Analog IN sign	-6 010	
Setting time (ms): 100 Image: Show corrected sweep data Image: User List Parameter to change: Number of pulses in pre-sweep train List of parameter values: Number of pulses in pre-sweep train Image: Pre-sweep train baseline duration (ms) Image: Pre-sweep train step duration (ms) Pre-sweep train step duration (ms) Pre-sweep train step level Setting time (ms): Before Post-train duration (pre-sweep train) Image: Post-train level (pre-sweep train)	Number of subsweeps:	4 C After C Opposite to waveform	
 User List Parameter to change: List of parameter values: Mumber of pulses in pre-sweep train Pre-sweep train baseline duration (ms) Pre-sweep train step duration (ms) Pre-sweep train step level Settling time (ms): Before 	Subsweep start-to-start	(ms): Minimum 💽 Subsweep holding level (mV): 0	
 ✓ User List Parameter to change: List of parameter values: Number of pulses in pre-sweep train Pre-sweep train baseline duration (ms) Pre-sweep train baseline level Membrane Test Betwy Pre-sweep train step duration (ms) Pre-sweep train step level Post-train duration (pre-sweep train) 	Settling time (ms):	100 Show corrected sweep data	
1 Anna 1 40 Elemented 11 Elemented 12 Elemented 12	Viser List Parameter to change:	Number of pulses in pre-sweep train	
	Membrane Test Bet Settling time (ms): Befor	 Pre-sweep train baseline duration (ms) Pre-sweep train baseline level Pre-sweep train step duration (ms) Pre-sweep train step level rane Test Set 	

Together through life sciences.



Examples: List of Parameter values

- The list of values for the <u>A Epoch level</u> might be:
 -50, 65, -20, 100, 29
- The list of values for the <u>A Epoch duration</u> might be:
 22, 44, 100, 75


Change in Epoch holding levels

Together through life sciences.

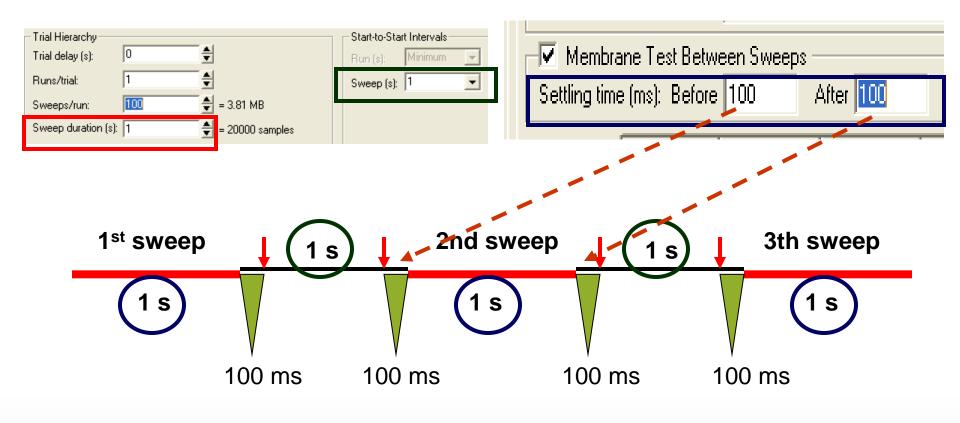
Change in Epoch durations

Together through life sciences.

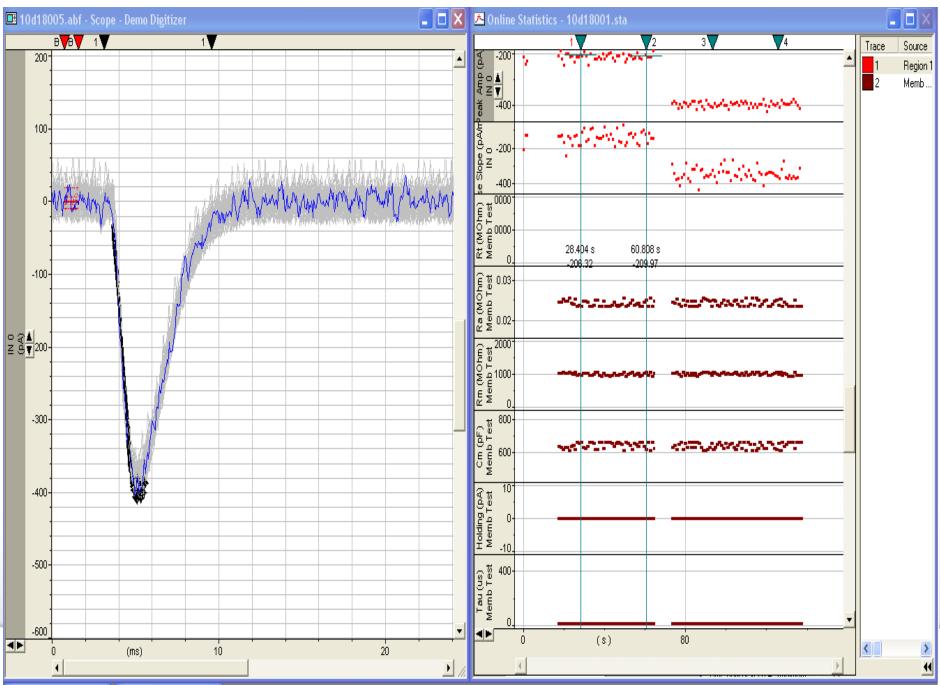
Membrane Test Between Sweeps

Together through life sciences.

Membrane Test


- Access resistance, Ra
- Membrane resistance, Rm
- Membrane capacitance, Cm

- Time constant, Tau
- Holding current, Hold


Edit Protocol - Post-LTP protocol.pro		×
Mode/Rate Inputs Outputs Trigger Statistics Comments Ma	ath Waveform Stimulus	1
Acquisition Mode File C Gap-free C Gap-free C Variable-length events C High-speed oscilloscop	 Episodic stimulation 	
Trial Hierarchy Trial delay (s): 0 Runs/trial: 1 Sweeps/run: 100	Sweep (s): 1	h Waveforr Stimulus
Epis Sweeps/run. 100 = 3.01 MB Cmd I Sweep duration (s): 1 = 20000 samples 0 First noiding: E pochs: Last holding: Cmd I 15.6 ms 968.8 ms 15.6 ms 0 312 samples 19376 samples 312 samples		ain duration = 2 ms Post-train duration (ms); 10
Cmd 1 Sampling Rate per Signal 0 Fast rate (Hz): 20000 Cmd (0 Fast rate (Hz): 20000 0 Slow rate (Hz): 20000	Averaging Runs/trial = 1, no averaging Options	Post-train level (mV): 0 Polarity Same as waveform
Space available is 24114 sweeps = 50071 MB Total data Allow automatic analysis in other programs	throughput is 20 kHz (= 2.29 MB/min)	C Opposite to waveform ng level (mV): ted sweep data
OK Cancel Help Acquisition Episodic	c stimulation	
	Test Between Sweeps s): Before 100 After 100 For oth	er settings, use Configure / Membrane Test Setup
Channel #0 Ch OK	nannel #1 Channel #2 Channel #3 Cancel Help Acquisit	ion mode: odic stimulation Update Preview
gether through life sciences. 012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of M		Molecula Device

Together through life sciences.

Together through life sciences.

©2012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of Molecular Devices, LLC or their respective owners.

Devices

🖞 Cla	mofit	- [Resi	ılts1 - F	Results]													
_		-			Event Detect	tion Confi	igure Tools	Window	Help								
	New New Dat	a File In	ndex														
	Open Da Open Da		ons			Ctrl+0											
	Open Da	•					BR. A	Xal	III Kas								
É	Open Ot	her					Lab Be		Ł								
	Close					Ctrl+W	Resul	:s & Statist		l <mark>ampfit - [Res</mark> ile Edit View			tection Configu	ure Tools Window	Help		
	Close All								<u> </u>			ì 🕹 🖻					
									Factor References		「「「「「「」」						
									1	 <u>∧</u> 4 X Y+	XY t	<u> </u> <u> </u> <u> </u> <u></u>	≣ <u>≫</u> Σ	Mu Ac ≚c #	ų t		
														Memb Test 0-Mem		Memb Test M	lemb Test
									1								
									2		-396.618	-341.907	0.0244	1023.98	640.185	0	15.625
									4	1.00001	-392.27	-304.071	0.0244	1023.98		0	15.625
									5	2.00001	-425.617	-327.669	0.0244	1023.98		0	15.625
									6	3.00001	-389.135	-369.928	0.0244	1023.98	640.185	0	15.625
									7	4.00001	-401.418	-527.35	0.0244	1023.98	640.185	0	15.625
									8	5.00001	-407.63	-301.137	0.0244	1023.98		0	15.625
									9 10 11	6.00001	-377.328	-433.741	0.0244	1023.98		0	15.625
									10	7.00001	-429.17	-300.389	0.0244	1023.98		0	15.625
									11	9.00001	-380.015 -407.305	-241.361 -269.556	0.0244	1023.98		0	15.625
									12	9.00001	-407.305	-269.556	0.0244	1023.98		0	15.625
									13		-410.625	-317.562		1023.98		0	15.625
									14			-402.452	0.0244	1023.98		0	15.625
									16		-411.306	-402.432	0.0244	1023.98		0	15.625
									17		-406.689	-337.691	0.0244	1023.98		0	15.625
									18			-291.797	0.0244	1023.98		0	15.625
									19		-411.435	-325.913		1023.98		0	15.625
									20		-382.614	-429.453	0.0244	1023.98		0	15.625
									21		-396.152	-312.506	0.0244	1023.98		0	15.625
									22		-392.563	-363.627	0.0244	1023.98	640.185	0	15.625

36

37 38

39

40

41

42

-387.604

-379.512

-416.414

-412.133

-407.789

-387.002

-390.243

-406.754

-401.839

-395.766

-412.66

-372.564

-399.646

-397.646

-401.371

-418.472

-384.828

-377.506

-427.499

-406.899

-260.169

-369.29

-416.725

-336.846

-392.96

-255.915

-214.245

-407.541

-342.663

-317.118

-351.936

-304.056

-371.95

-307.246

-330.406

-330.846

-367.603

-380.116

-278.578

-393.753

0.0244

0.0244

0.0244

0.0244

0.0244

0.0244

0.0244

0.0244

0.0244

0.0244

0.0244

0.0244

0.0244

0.0244

0.0244

0.0244

0.0244

0.0238

0.0238

0.0238

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

1023.98

1023.98

1023.98

1023.98

1023.98

1023.98

1023.98

1023.98

1023.98

1023.98

1023.98

1023.98

1023.98

1023.98

1023.98

1023.98

1023.98

995.964

995.964

995.964

640.185

640.185

640.185

640.185

640.185

640.185

640.185

640.185

640.185

640.185

640.185

640.185

640.185

640.185

640.185

640.185

640.185

654.885

654.885

654.885

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 \sim

15.625

15.625

15.625

15.625

15.625

15.625

15.625

15.625

15.625

15.625

15.625

15.625

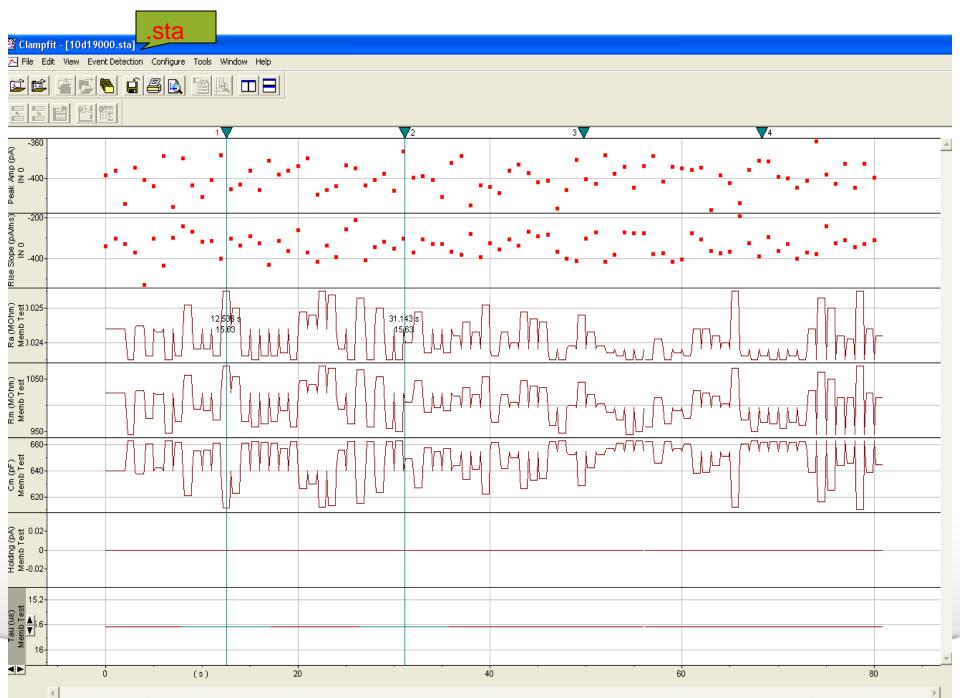
15.625

15.625

15.625

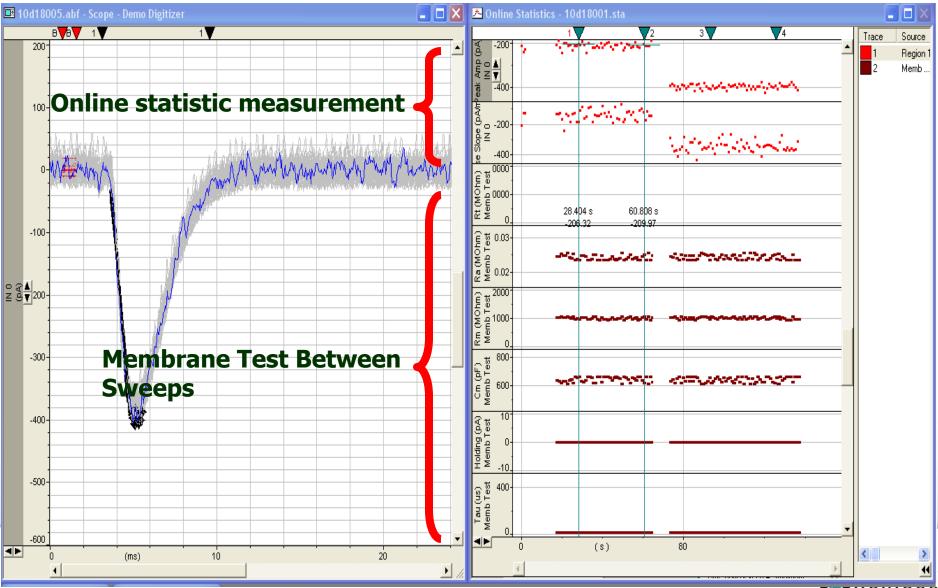
15.625

15.625


15.625

υevices

15.625


аг

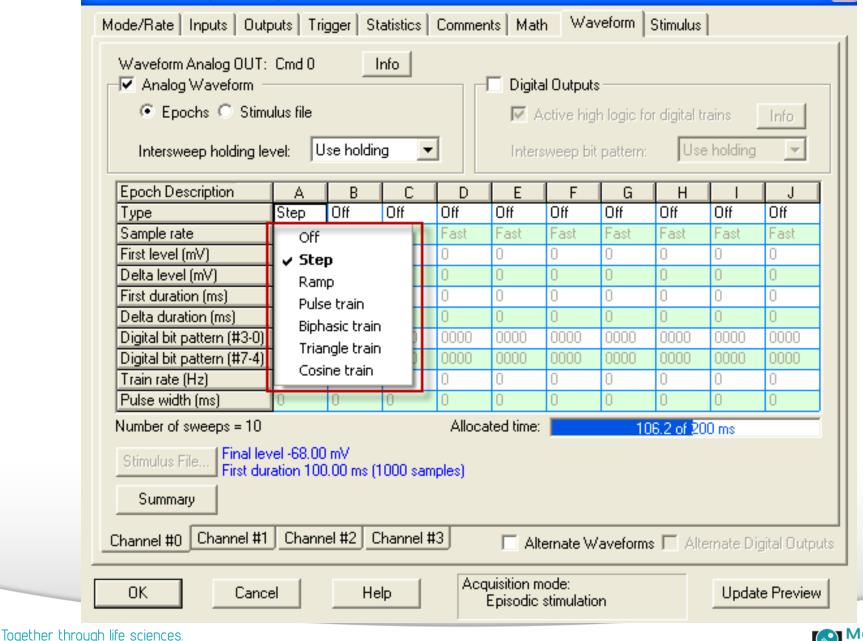
Together through life sciences.

Devices

Summary

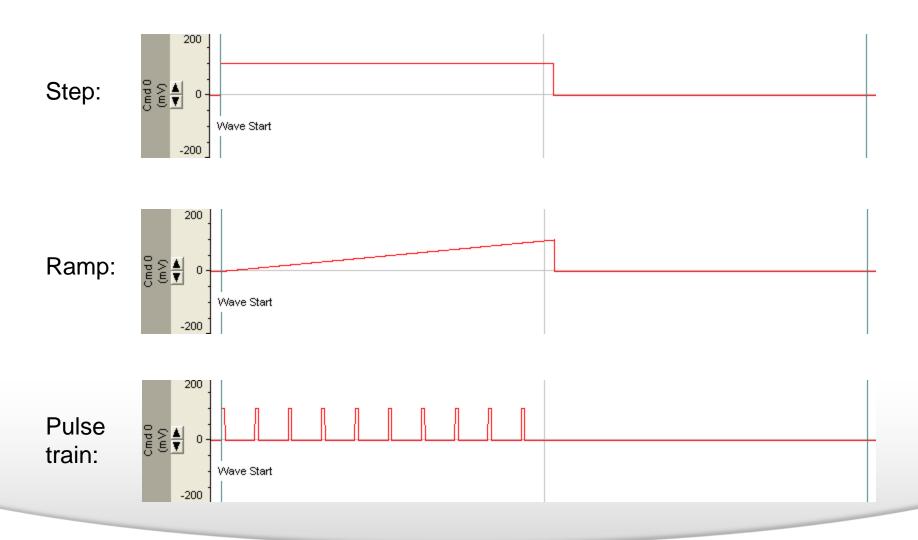
©2012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of Molecular Devices, LLC or their respective owners.

Devices


Stimulus File

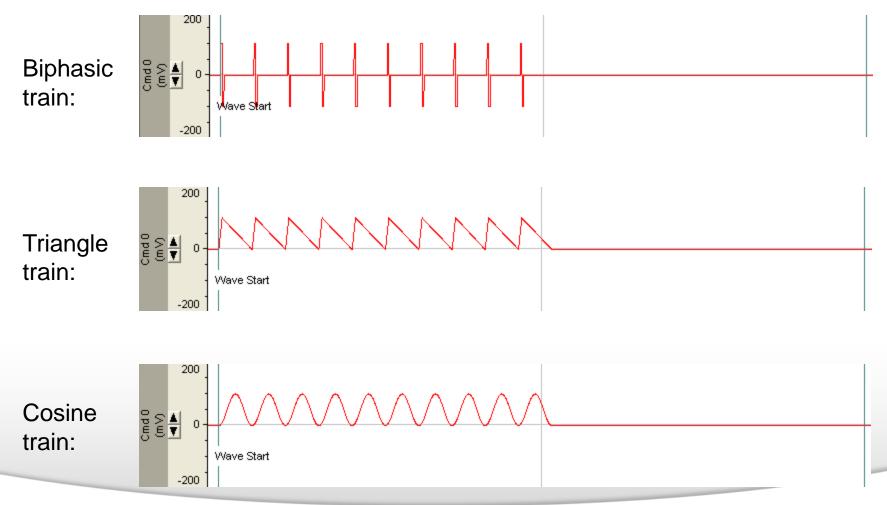
 Stimulus Files are used when the Waveform Editor cannot create the desired waveform.

Together through life sciences.

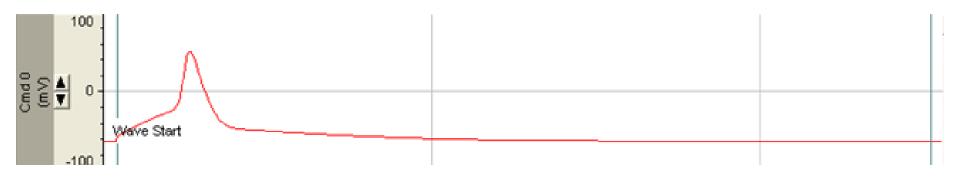

Edit Protocol - (untitled)

х

evices


Default waveforms

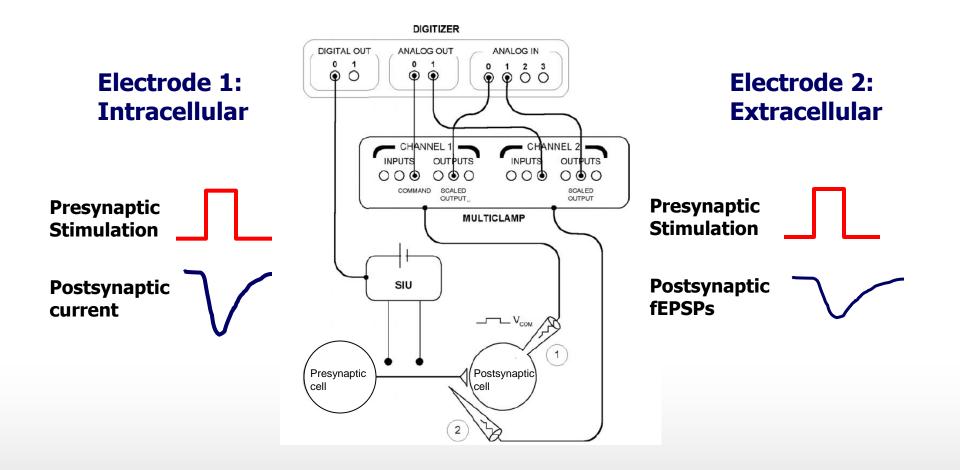
Together through life sciences.


Default waveforms

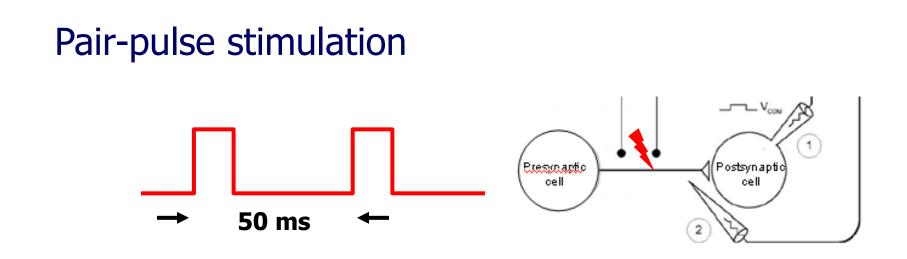
Together through life sciences.

How to create an action potential waveform?

Together through life sciences.

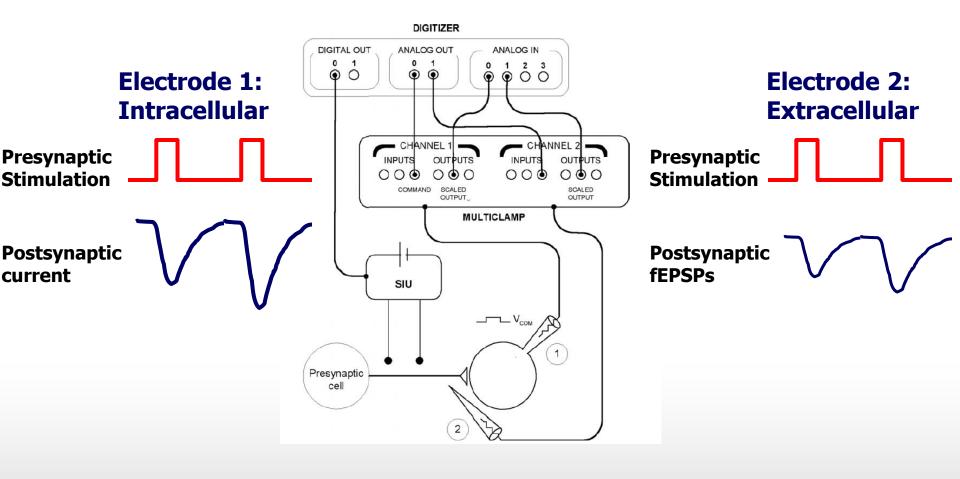


Advanced Tips for Protocol Writing in the Clampex Data Acquisition Module


Together through life sciences.

Whole cell and Extracellular Recordings

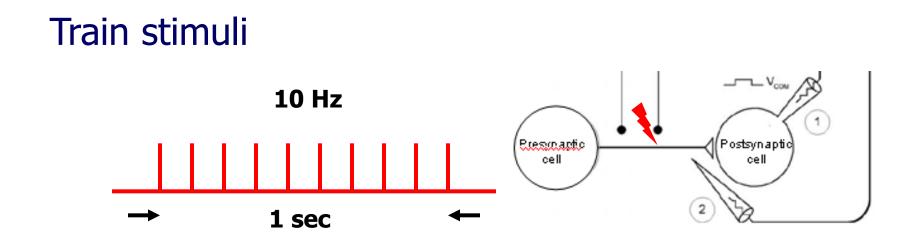
Together through life sciences.



Application: Synaptic plasticity, release probability in brain slice preparation

Together through life sciences.

Pair-pulse Stimulation: Presynaptic afferents


Together through life sciences.

Pair-pulse stimulation

🔁 Edit Protocol - (untitle	:d)									į	4	🔁 Wa	veform	n Preview				×
Mode/Rate Inputs Out	puts T	rigger S	tatistics	Comme	nts Ma	th Wa	/eform	Stimulus						1	₩2	3	₹4	
Waveform Analog OUT Analog Waveform Epochs C Stirr Intersweep holding le	Cmd 0 ulus file		Info		Digit	al Output: Active hig sweep bi	s	or digital		Info		Cmd 1 Cmd 0 (mV) (mV)	200 . ▼ 0 - 200 . 200 .	Wave Start				
Epoch Description	A	В	С	D	E	F	G	Н		J		55						
Туре	Step	Step	Step	Step	Step	Off	Off	Off	Off	Off			-200 -					
Sample rate	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast			200 .					
First level (mV)	-80	-80	-80	-80	-80	0	0	0	0	0		23	0 -					
Delta level (mV)	0	0	0	0	0	0	0	0	0	0		Cmd 2 (m V	- 0				Wave E	nd
First duration (ms)	100	1	49	1	50	0	0	0	0	0			-200					
Delta duration (ms)	0	0	0	0	0	0	0	0	0	0			200					
Digital bit pattern (#3-0)		0001	0000	0001	0000	0000	0000	0000	0000	0000			-					
Digital bit pattern (#7-4)	0000	0000	0000	0008	0000	0000	9999	0000	0000	0000		S da G md S	0-		50 ms			
Train rate (Hz)	0	0	0	0	0	0	0	0	Ũ	0		00						
Pulse width (ms)	0	0	0	0	0	0	0	0	0	0			-200 U					
Number of sweeps = 10				Alloc	ated time		21	0.2 of 3	00 ms				- 0					#
Stimulus File First du	ration 49).00 ms (4	90 sampl	es)									0					╡
Sumaias Filo																		#
Summary												<u>lĕ</u> ≩						
· · · ·													()	100	200	'	300
Channel #0 Channel #1	Chan	nel #2 (Channel ‡	‡3		ternate W	'aveform	s 🗖 Ali	ternate Dig	gital Outputs				4	Time (m	s) :	Sweep:1 Visible	e:1 of 1 ▶
OK Cano	el	He	elp	Ac	quisition r Episodic	node: : stimulatio	n		Updat	e Preview				=> Clipboard	Close	Help		

Together through life sciences.

Application: Synaptic plasticity, LTD in brain slice preparation

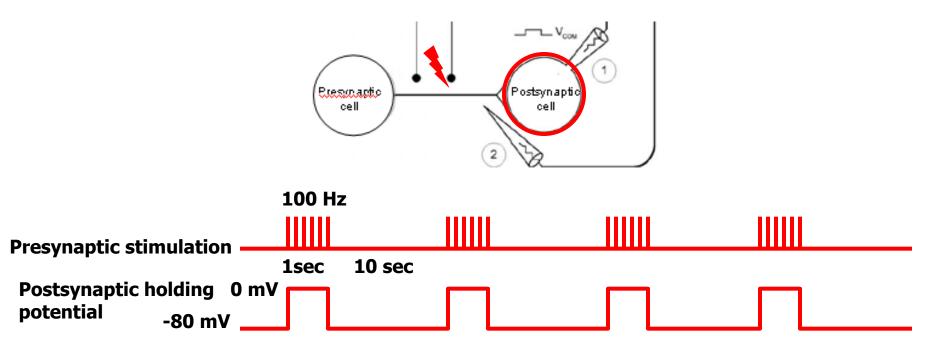
Train stimuli-10 pulses

		🔁 Waveform Preview	×
🚵 Edit Protocol - (untitled)	<u>×</u>		
Mode/Rate Inputs Outputs Trigger Statistics Comme	ents Math Waveform Stimulus	200	<u> </u>
Waveform Analog OUT: Cmd 0 Info ✓ Analog Waveform ← Epochs ← Stimulus file Intersweep holding levet: Use holding ▼	 Digital Outputs Active high logic for digital trains Info Intersweep bit pattern: Use holding 	P 0 -200 Wave Start 200 0	
		55	
Epoch Description A B C D	E F G H I J	-200	
Type Step Pulse Step Off	Off Off Off Off Off Off	200 .	
Sample rate Fast Fast Fast Fast	Fast Fast Fast Fast Fast		
First level (mV) -80 -80 0	0 0 0 0 0 0		
Delta level (mV) 0 0 0	0 0 0 0 0 0	UVave F	End
First duration (ms) 100 1000 0	0 0 0 0 0 0	-200 j	
Delta duration (ms) 0 0 0	0 0 0 0 0 0	200 .	
Digital bit pattern (#3-0) 0000 000* 0000	0000 0000 0000 0000 0000 0000		
Digital bit pattern (#7-4) 0000 0000 0000 0000	0000 0000 0000 0000 0000 0000		
Train rate (Hz) 0 10 0 0	0 0 0 0 0	10 Pulses	
Pulse width (ms) 0 1 0 0	0 0 0 0 0 0		
Number of sweeps = 10 Alloc	ated time: 1246.8 of 1500 ms		≠ ∥
Stimulus File First duration 1000.00 ms (10000 samples)	Pulse count 10 Train rate 10.00 Hz (1000 samples) Pulse width 1.00 ms => 1 % (10 samples)	> > <td></td>	
Channel #0 Channel #1 Channel #2 Channel #3	Alternate Waveforms 🗍 Alternate Digital Outputs	Time (s) Sweep:1 Visib	le:1 of 1
OK Cancel Help Ac	quisition mode: Episodic stimulation	=> Clipboard Close Help	1.

Together through life sciences.

Train stimuli-50 pulses

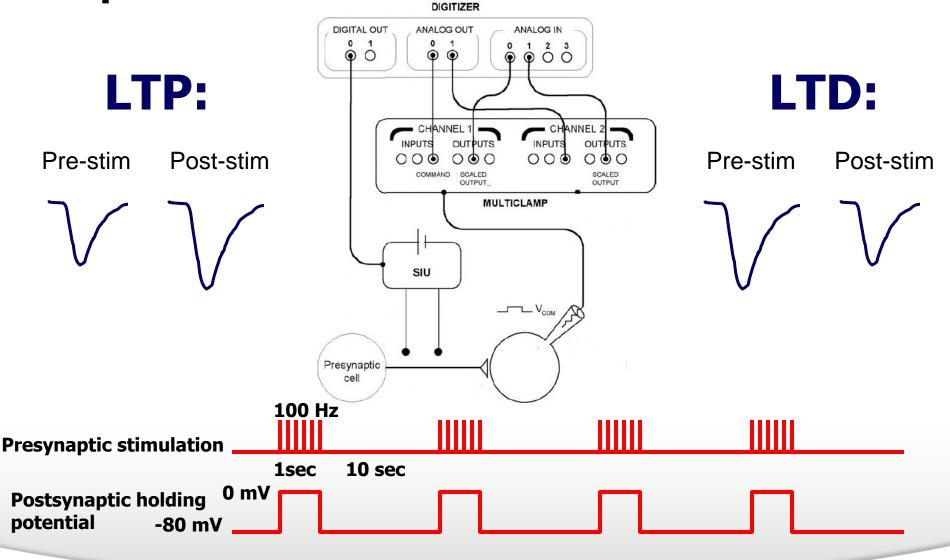
🖀 Edit Protocol - (untitled)	X	🖀 Waveform Preview							
Mode/Rate Inputs Outputs Trigger Statistics Comm	ents Math Waveform Stimulus		A						
Waveform Analog OUT: Cmd 0 Info									
Analog Waveform	🔽 Digital Outputs	557							
€ Epochs ○ Stimulus file	Active high logic for digital trains	-200 Wave Start	_						
		200							
Intersweep holding level: Use holding	Intersweep bit pattern: Use holding 💌		-						
A B C D	E F G H I J								
Type Step Pulse Step Off	Off Off Off Off Off	-200 1 200 1	-						
Sample rate Fast Fast Fast Fast	Fast Fast Fast Fast Fast								
First level (mV) -80 -80 0	0 0 0 0 0	B 0 Wave End	- 1						
Delta level (mV) 0 0 0	0 0 0 0 0	US Wave End							
First duration (ms) 100 1000 0	0 0 0 0 0	-200 1							
Delta duration (ms) 0 0 0	0 0 0 0 0	200 .	-						
Digital bit pattern (#3-0) 0000 000* 0000 0000	0000 0000 0000 0000 0000 0000								
Digital bit pattern (#7-4) 0000 0000 0000 0000	0000 0669 0000 0000 0000 0000		-						
Train rate (Hz) 0 50 0 0		50 Pulses							
Pulse width (ms) 0 1 0 0	0 0 0 0 0		_						
Number of sweeps = 10 Allo	cated time: 1246.8 of 1500 ms		-						
Stimulus File First duration 1000.00 ms (10000 samples	s) Pulse count 50		-						
oundros mess	Train rate 50.00 Hz (200 samples)								
Summary	Pulse width 1.00 ms => 5 % (10 samples)		-						
		■■ 0 0.4 0.8 1.2							
Channel #0 Channel #1 Channel #2 Channel #3	🔲 Alternate Waveforms 🔲 Alternate Digital Outputs	Time (s) Sweep:1 Visible:1	of 1						
OK Cancel Help Ac	cquisition mode: Episodic stimulation	=> Clipboard Close Help	//.						



Summary

- Telegraphing/Lab Bench settings
- Writing protocols for
 - Pair-pulse stimulation/Digital Output
 - Train stimulation

Tetanus Stimulation protocol

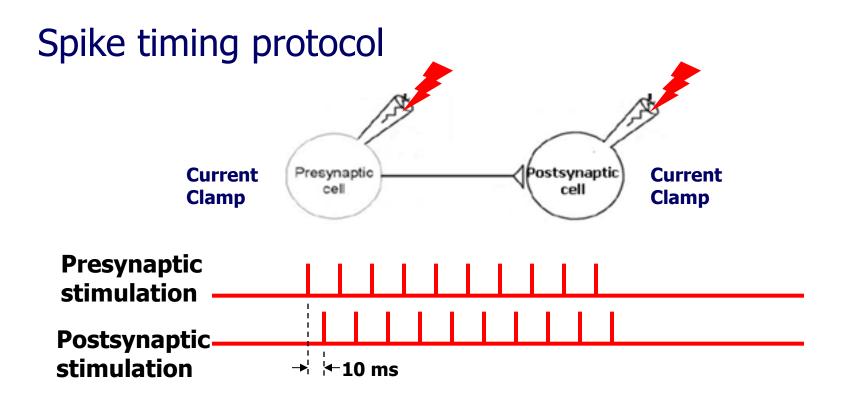


Application: Synaptic plasticity, LTP/LTD in brain slice preparation

Together through life sciences.

Tetanus Stimulation and Postsynaptic Depolarization

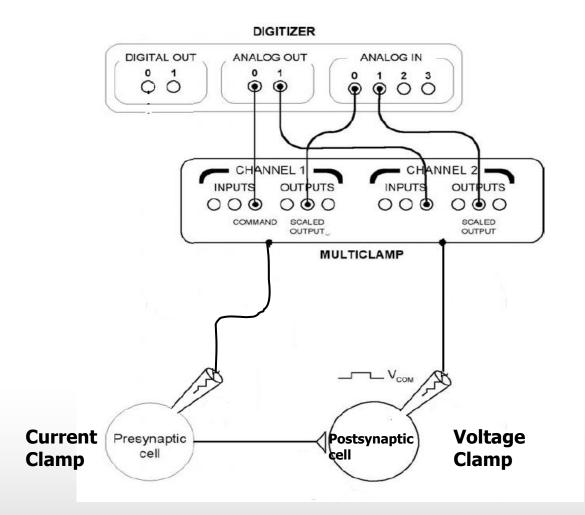
Molecular Devices


Together through life sciences.

Tetanus Stimulation and Postsynaptic Depolarization

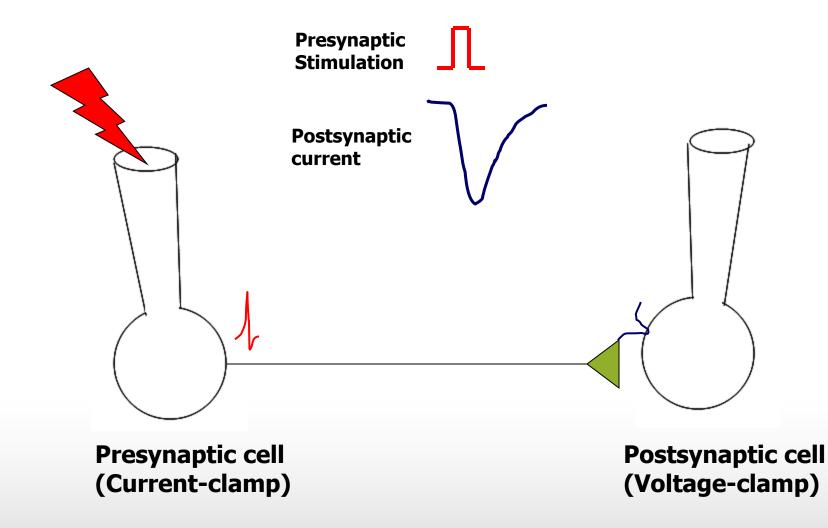
🔁 Edit Protocol - (untitleo	l)									[×	🔁 Wa	veform	n Preview						×
Mode/Rate Inputs Outp	uts Í Tri	ager Í S	tatistics [Comme	nts Í Mat	h Wa	veform	Stimulus						1	$\overline{}$	2	3		4	
Waveform Analog OUT: ☐ Analog Waveform — ⓒ Epochs ⓒ Stimu Intersweep holding lev	Cmd 0 Ilus file		Info	,	Digit.	al Output Active hig		or digital I		Info		Cmd 1 Cmd 0 (mV) (mV)	200 . 0 - -200 - 200 .	Wave Star	「			Π		
Epoch Description	A	B		L D	F	F	G	Гн				[5 5	-							
Туре	Step	Step	Step	Step	Step	Step	Step	Step	Step	Off			-200							
Sample rate	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast	Fast			200 .							
First level (mV)	-80	0	-80	þ	-80	0	-80	0	-80	0		22	_							
Delta level (mV)	0	0	0	þ	0	0	0	0	0	0		Cmd 2 (m d 2	0-						N	ave End
First duration (ms)	100	1000	10000	000	10000	1000	10000	1000	100	0			-200							
Delta duration (ms)	0	0	0	þ	0	0	0	0	0	0		<u> </u>	200							
Digital bit pattern (#3-0)	0000	000×	0000)00×	0000	000×	0000	000×	0000	0000										
Digital bit pattern (#7-4)	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000		Cmd3 (md3	0-							
Train rate (Hz)	0	100	0	100	0	100	0	100	0	0		55	1							
Pulse width (ms)	0	1	0		0	1	0	1	0	0			-200							
Number of sweeps = 10				Alloc	ated time:		354	50 of 40	1000 ms				U U							
Summary			1000 sam									Appebbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb			,	1	20	,	,	40
Channel #0 Channel #1	Chann	el #2 (Channel #	3]		ternate W	/aveform:	s 🗌 Alt	ernate Di	igital Outputs				<u>र</u>		T	ime (s)		Sweep:1	Visible:1 of 1
OK Cance	9	He	elp	Ac	quisition n Episodic		on		Updal	te Preview				=> Clipb	oard	Close		Help		

Together through life sciences.

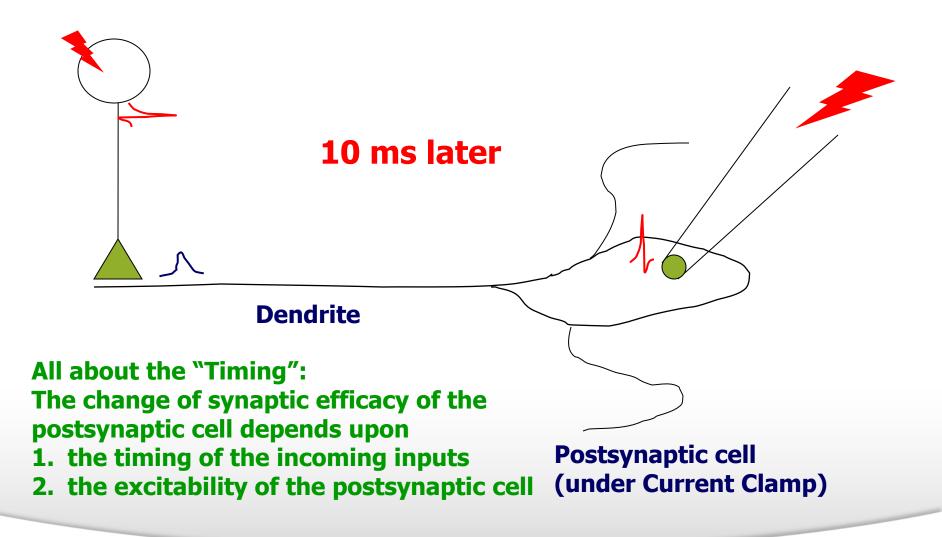


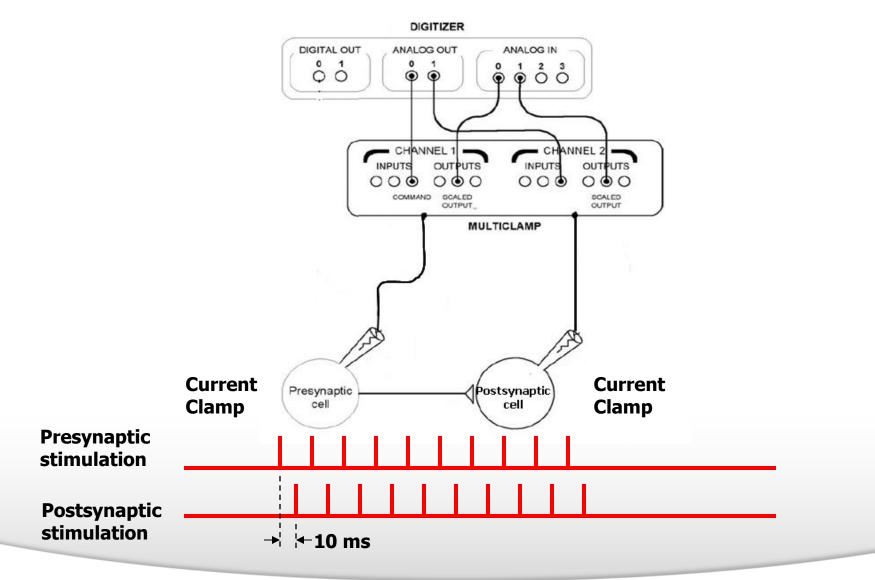
Application: Synaptic plasticity, LTP/LTD in brain slice preparation and culture cell

Together through life sciences.

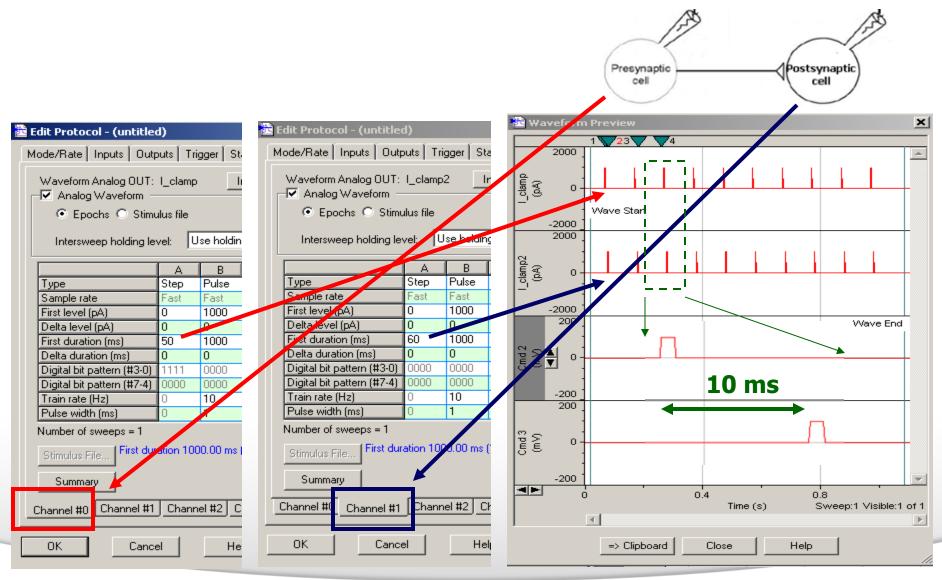

Dual Whole-cell Patch-clamp Recordings

Together through life sciences.

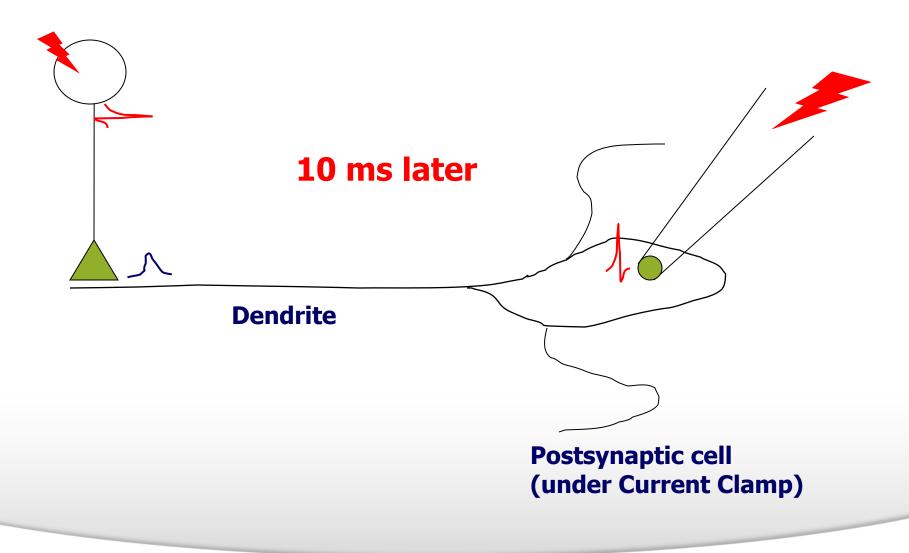

Dual Whole-cell Patch-clamp Recordings


Spike timing protocol: EPSP precedes Action Potential

Together through life sciences.

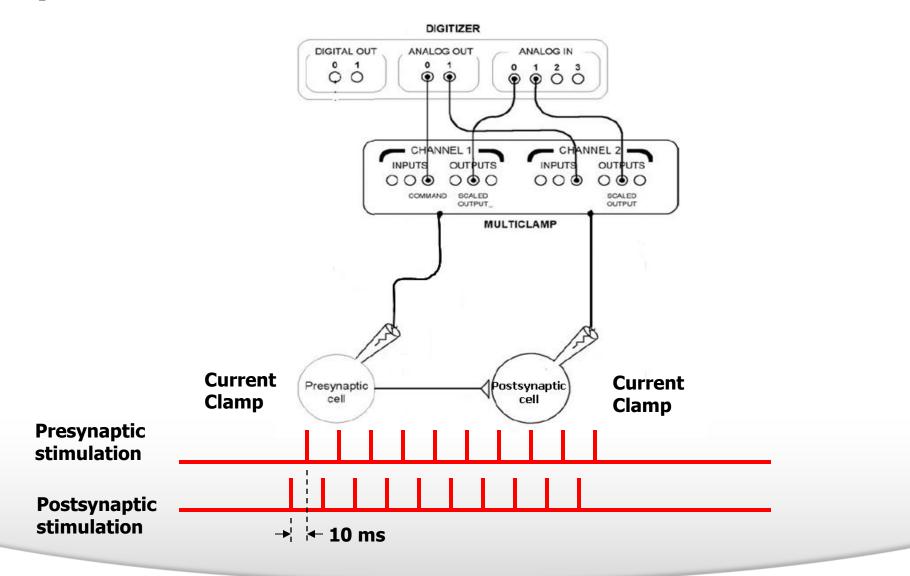

Spike timing protocol: EPSP precedes Action Potential

Together through life sciences.


Spike timing protocol: EPSP precedes Action Potential

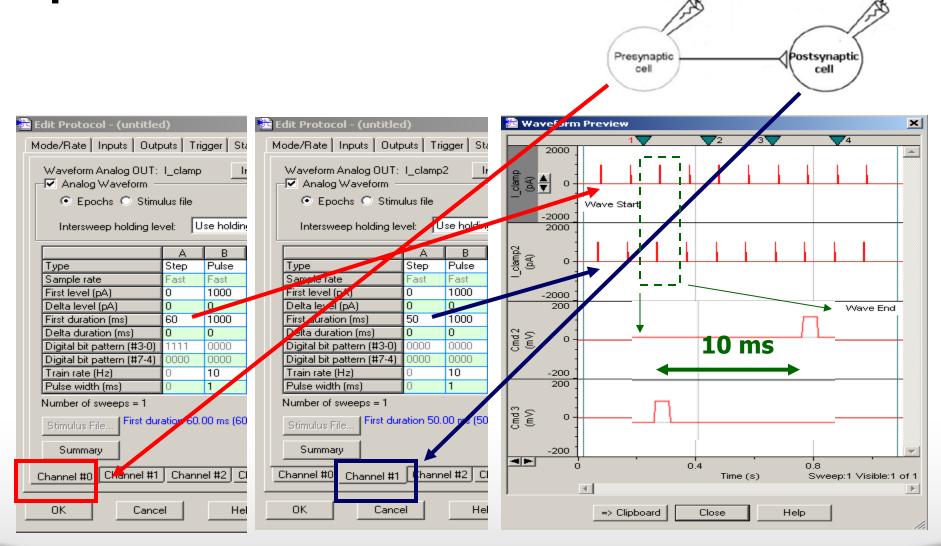
Together through life sciences.

Spike timing protocol: Action Potential precedes EPSP



©2012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of Molecular Devices, LLC or their respective owners.

Together through life sciences.


Spike timing protocol: Action Potential precedes EPSP

Together through life sciences.

Spike timing protocol: Action Potential precedes EPSP

Together through life sciences.

Action Potential Analysis in Clampfit

Together through life sciences.

Frequent Ask Questions in Action Potential Analysis

- How can I measure the frequency of action potentials?
- The baseline of my recording is drifting. It is hard to analyze the spikes.
- How do I sort the spikes?
- My recording is too noisy. It is hard to retrieve the spikes from the noises?
- When I do the event search, how can I avoid the large spike of stimulation artifacts?
- How do I perform a phase plot of dV/dt vs V in Clampfit?
- How do I calculate the cardiac action potential duration at 90% repolarization (APD_{90%})?

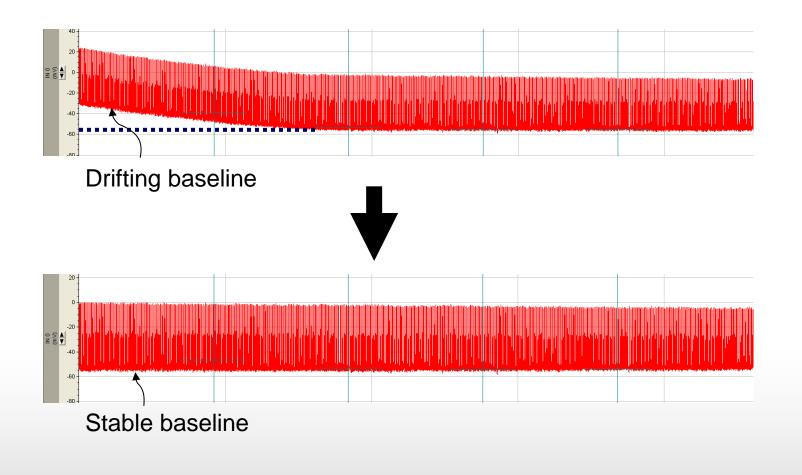
Together through life sciences.

What we learn today

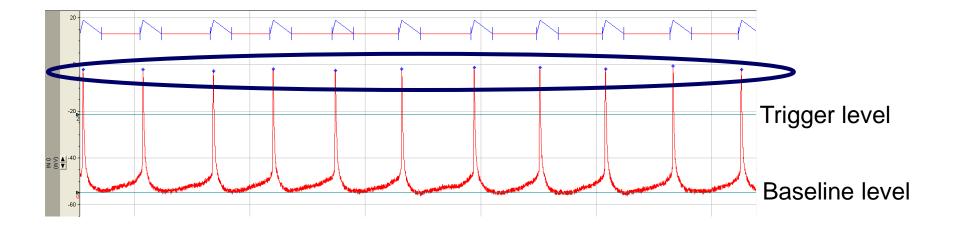
- Baseline adjustment
- Event Search
- Event sorting
- Noise/Event rejection
- Spike alignment
- Combine trace
- Phase plot
- Action potential analysis

Together through life sciences.

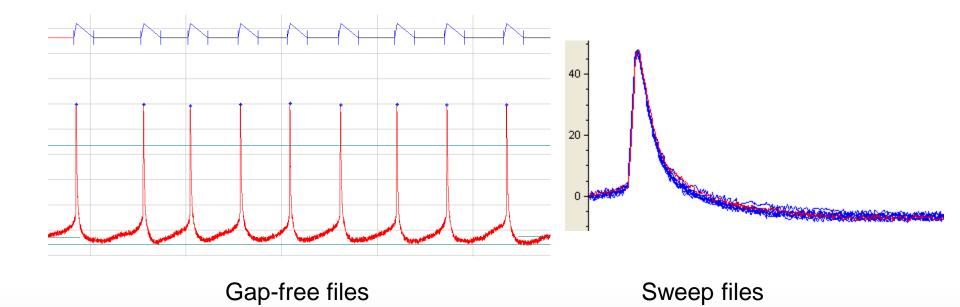
Features in Clampfit


- Baseline adjustment
 - Manual baseline adjustment
- Search event
 - Event Detection/Threshold Search
- Event sorting
 - Event Detection/Threshold Search
- Spike alignment
 - Time shift
- Phase plot/Combine trace
 - Arithmetic
- Action potential analysis
 - Statistics

Together through life sciences.


Baseline adjustment

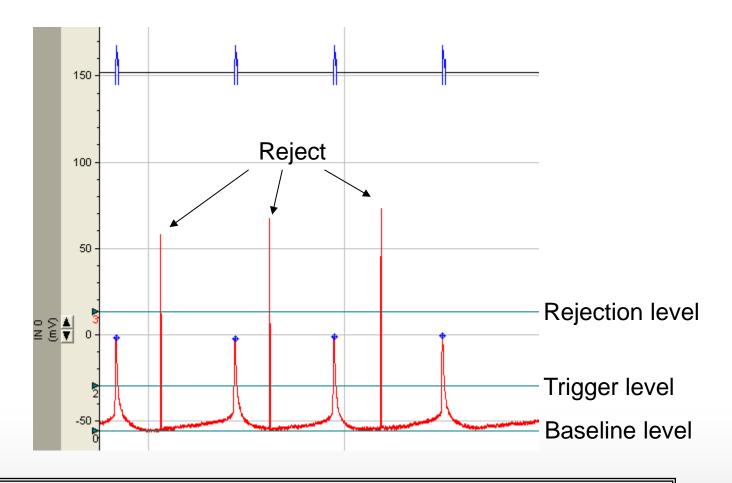
Event Search


If an event crosses the trigger level, the event will be accepted.

Together through life sciences.

Event Sorting

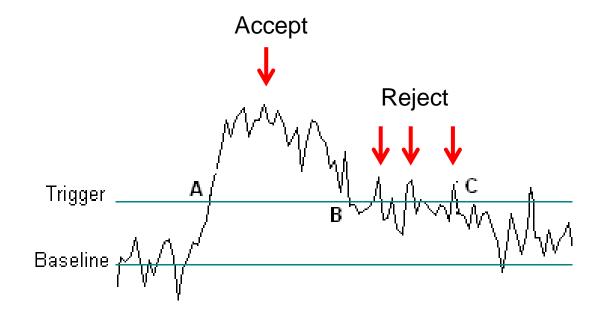
 Extract events from a gap-free file and transform them into sweeps.


Together through life sciences.

Noise/Event Rejection

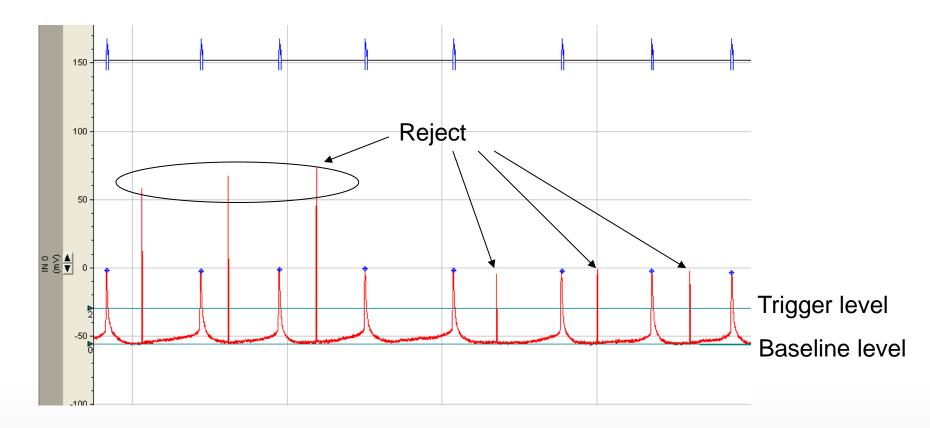
- Event rejection based on amplitude
- Noise rejection based on short duration
- Event rejection based on event length

Noise/Event Rejection based on amplitude


If an event crosses the rejection level, the event will be rejected.

Together through life sciences.

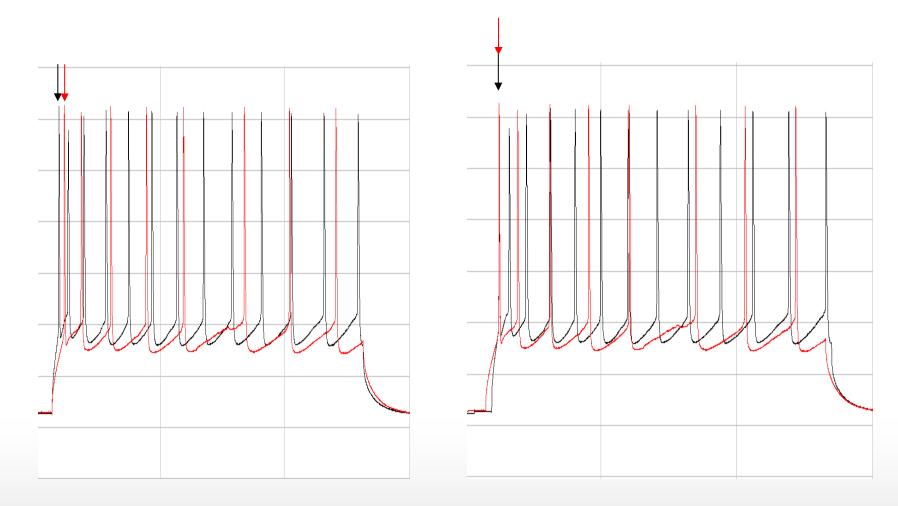
Noise/Event Rejection based on too short duration



Noise duration in ms can be set to reject noise spikes.

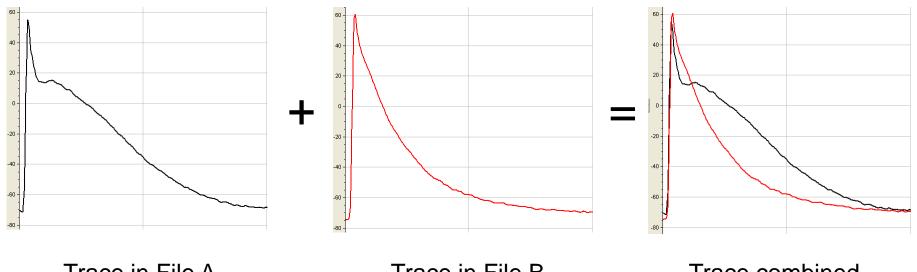
Together through life sciences.

Noise/Event Rejection based on event duration



You can select Min allowed duration to eliminate short events. You can select Max allowed duration to discard events that are too long.

Together through life sciences.

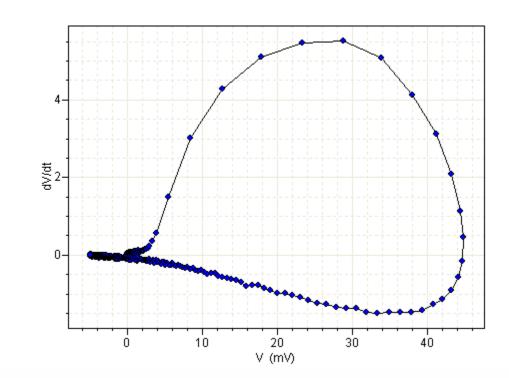

Peak Alignment

Molecular Devices

Combine traces

Trace in File A

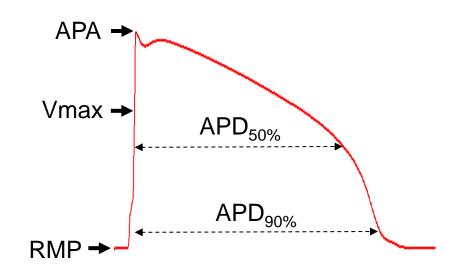
Together through life sciences.


Trace in File B

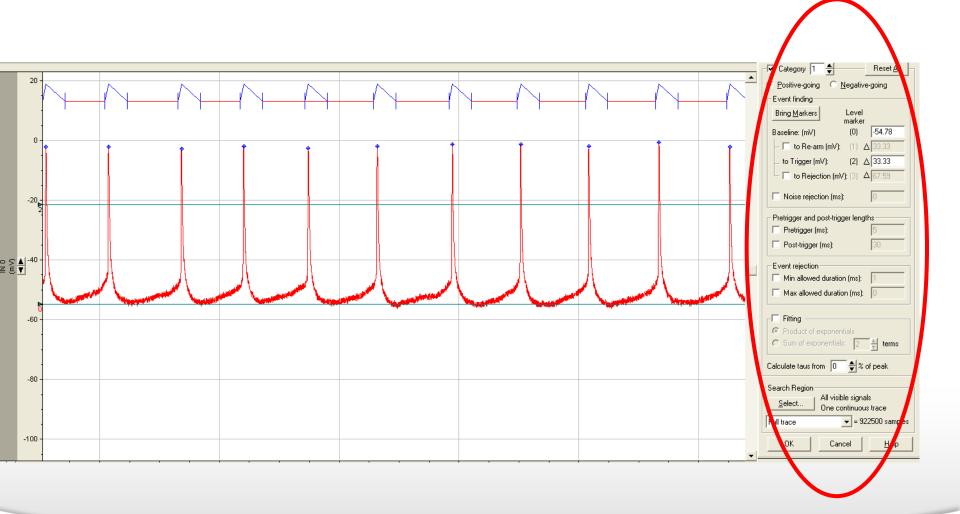
Trace combined

Phase Plot

• Plot dV/dt versus V



Together through life sciences.


Cardiac Action Potential Analysis

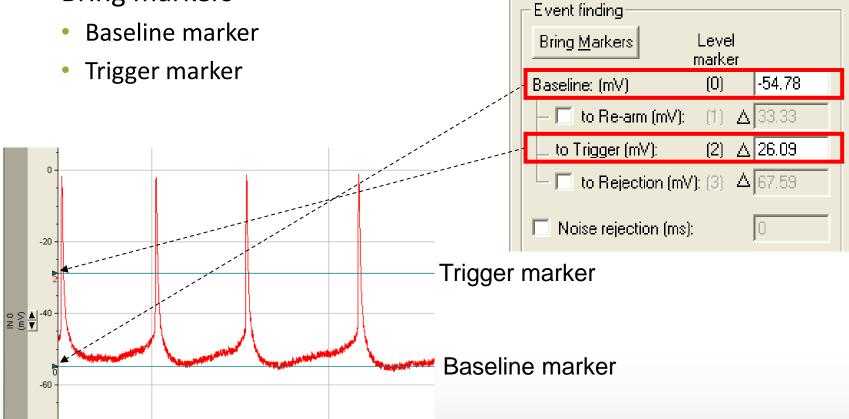
- Resting membrane potential (RMP)
- Action potential Amplitude (APA)
- Action Potential Duration (APD)
- Max Slope of depolarization (Vmax)

Event Detection/Threshold Search

Together through life sciences.

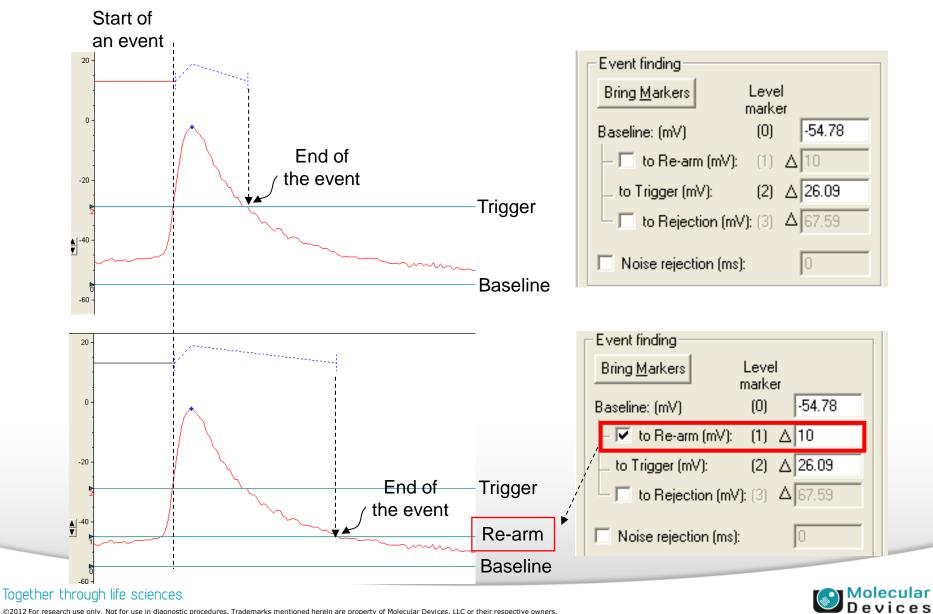
Set category

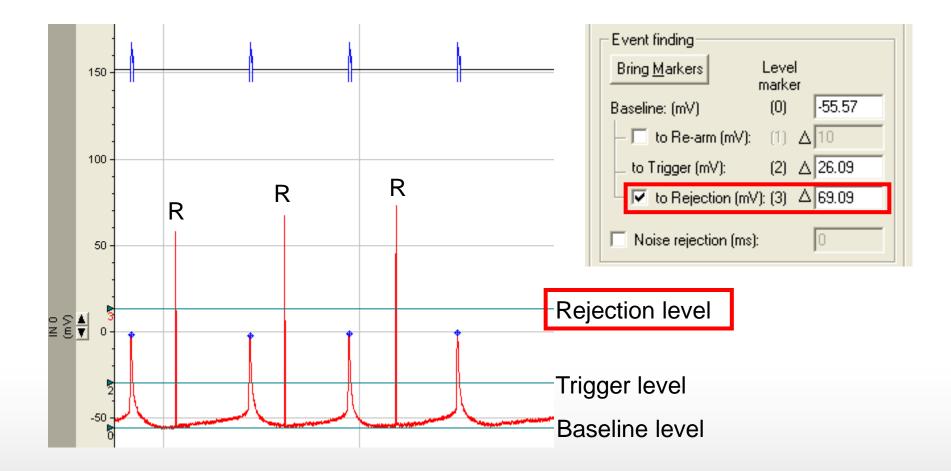
- Each category represents a unique search criterion. There are up to 8 different categories
- The positive- and negativegoing describe the location of peak relative to baseline.
 - Action potential is a positivegoing event


Threshold Search	×
Category 1 🐥 Reset /	
<u>Positive-going</u> <u>Negative-going</u>	

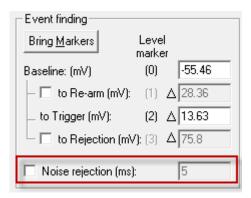
Together through life sciences.

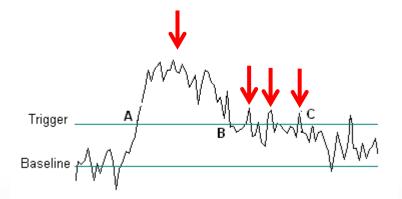
Bring markers


• Bring markers

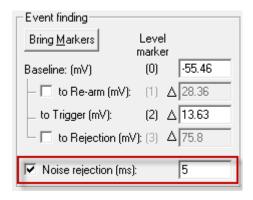


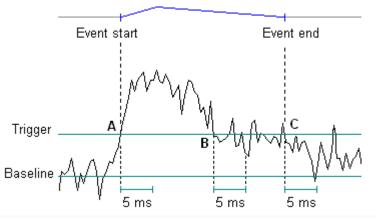
Re-arm


Event Rejection



Together through life sciences.


Noise Rejection



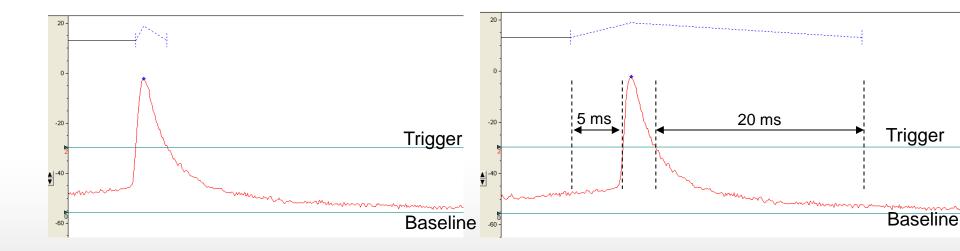
Event Start and End without Noise rejection

Together through life sciences.

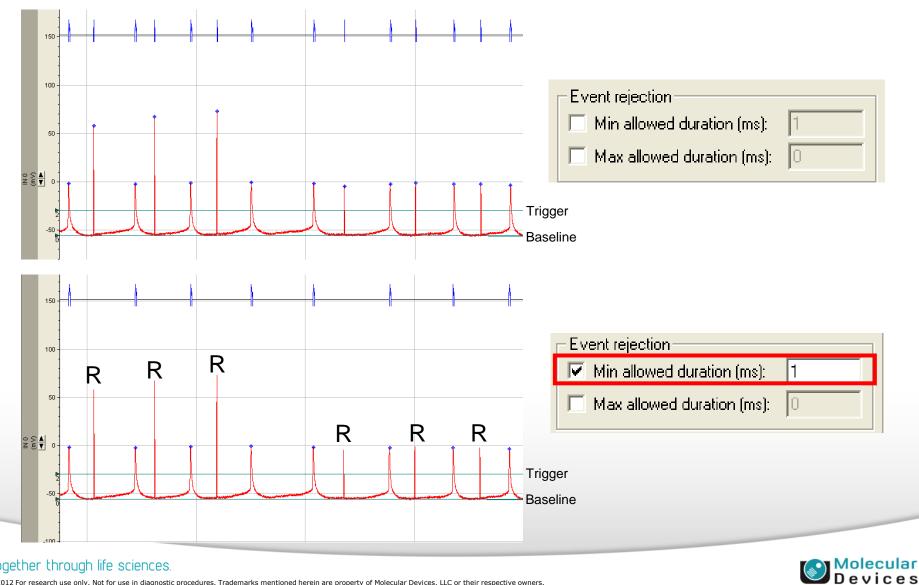
Event Start and End with 5 ms Noise rejection

Molecular Devices

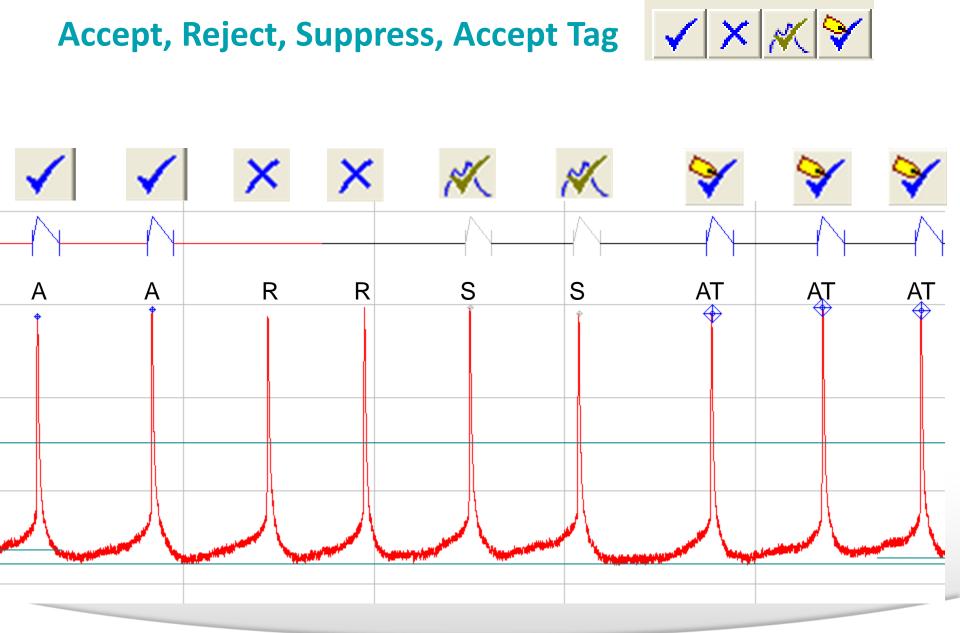
©2012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of Molecular Devices, LLC or their respective owners.


6/20/2013 Pg. 179

Pre-trigger and Post-trigger


Pretrigger and post-trigger lengths						
🔽 Pretrigger (ms):	5					
🔽 Post-trigger (ms):	20					

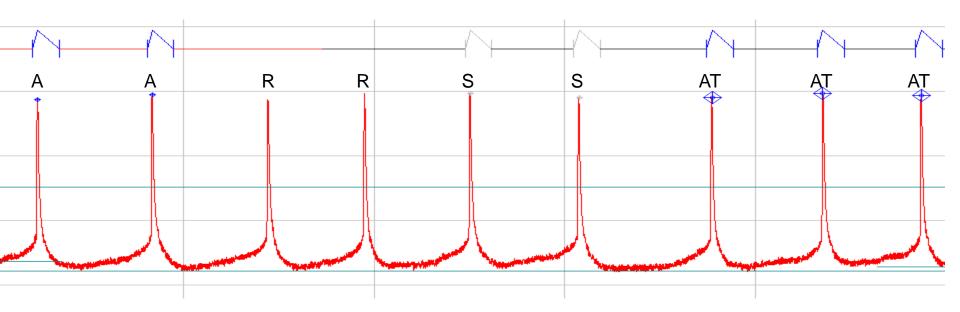
Molecular Devices



Together through life sciences.

Event Rejection

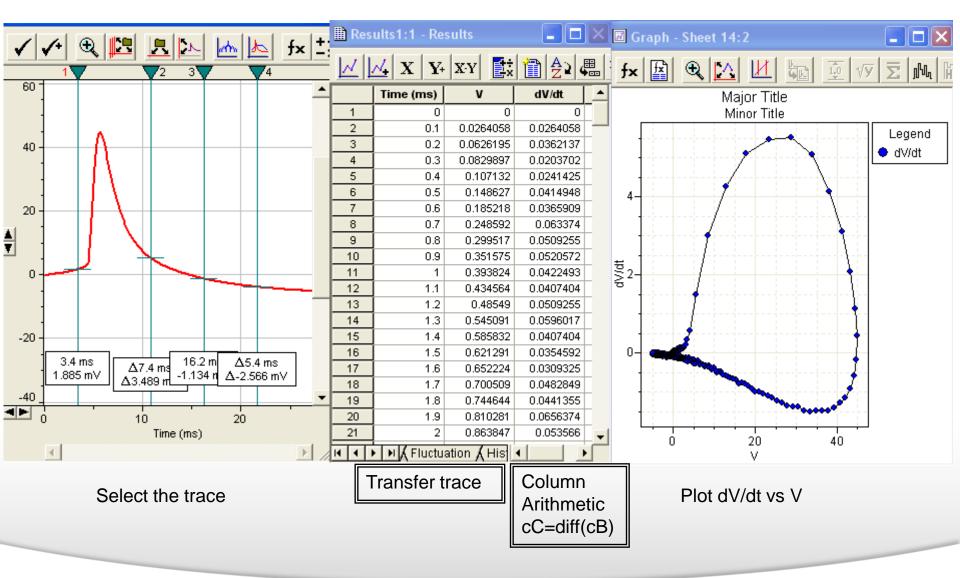
Together through life sciences.



Together through life sciences.

Event States

	Trace	Search	Category	State
1	1	1	1	A
2	1	1	1	A
3	1	1	1	AT
4	1	1	1	AT
5	1	1	1	AT


	Trace	Search	Category	State
1	1	1	1	A
2	1	1	1	A
3	1	1	1	S
4	1	1	1	S
5	1	1	1	AT
6	1	1	1	AT
7	1	1	1	AT

Event Detection/Show Suppressed Events

Together through life sciences.

Phase Plot

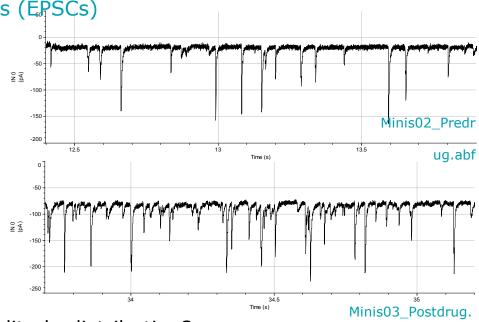
Together through life sciences.

Summary

- Baseline adjustment
- Event Search
- Event sorting
- Noise/Event rejection
- Spike alignment
- Combine trace
- Phase plot
- Action potential analysis

Together through life sciences.

Analysis of Synaptic Events with the Clampfit Data Analysis Module



Together through life sciences.

Agenda

• Postsynaptic miniature currents (EPSCs)

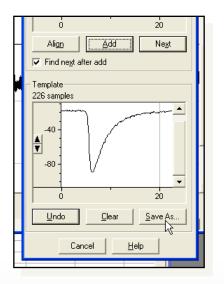
• Pre-drug

• Post-drug

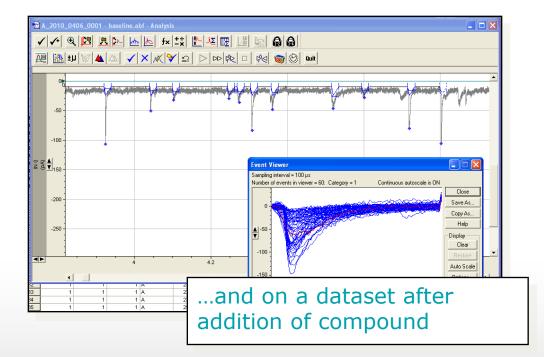
- Are there differences in the amplitude distribution?
 - Post-synaptic mechanism
- Are there differences in the frequency?
 - Pre-synaptic mechanism

Together through life sciences.

©2012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of Molecular Devices, LLC or their respective owners.

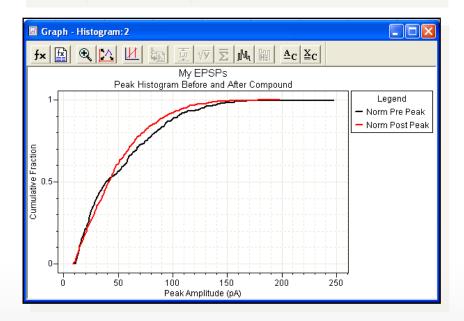


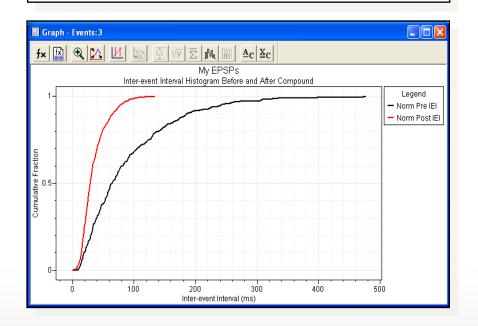
abf


Strategy

Create a template from one of the data files

Perform a template search on a data segment before addition of compound...

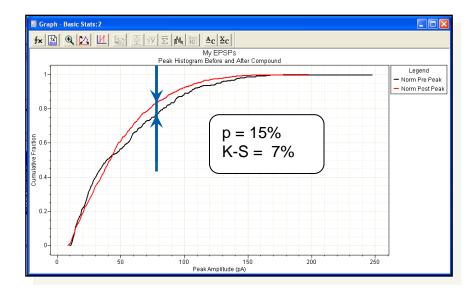

Together through life sciences.

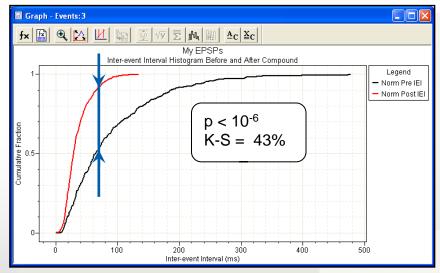


Strategy

Create cumulative histograms of the peak amplitudes...

...and the inter-event intervals.



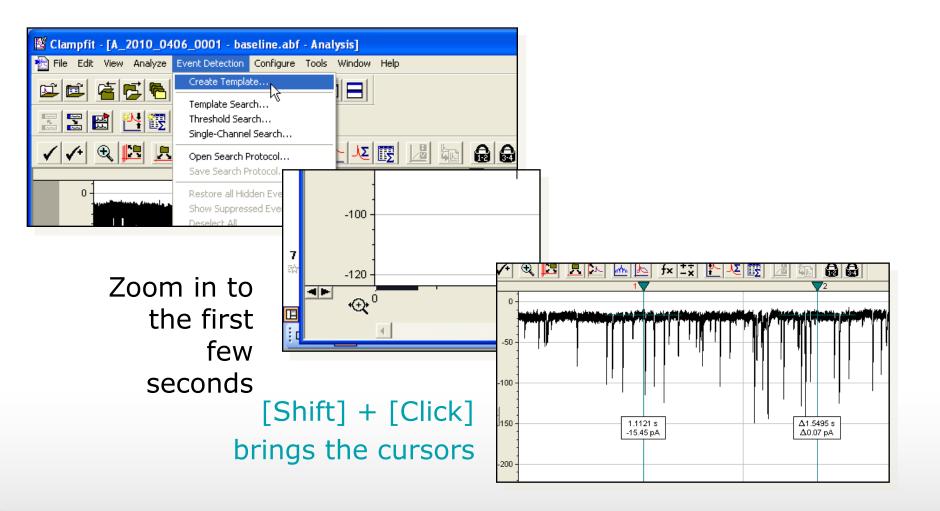


Together through life sciences.

Strategy

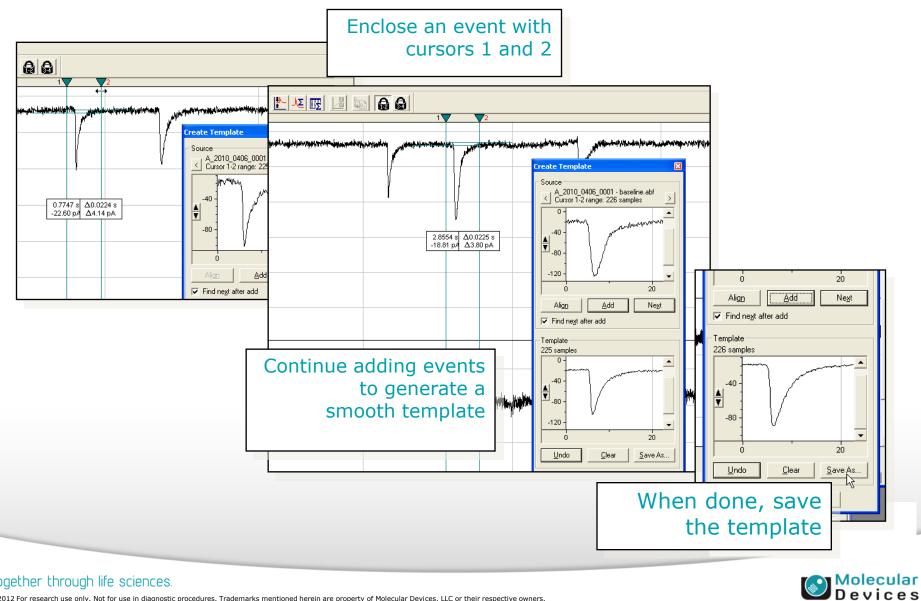
Perform a statistical analysis to determine whether there are differences between the two datasets.

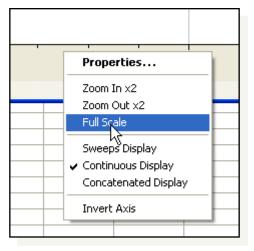
Together through life sciences.


Clampfit Features Discussed

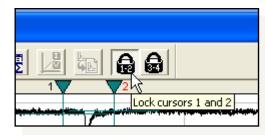
- Event Detection > Create Template
- Event Detection > Template Search
- Move Cursors efficiently
- View > Zoom > Between Cursors
- Analyze > Arithmetic
- Format > Column > Rename
- Format > Rename Sheet
- Analyze > Histogram
- Efficiently creating a graph using X-Y pairs
- Editing a graph
- Analyze > Kolmogorov-Smirnov Test
- Analyze > Basic Statistics

Together through life sciences.


Creating a Template

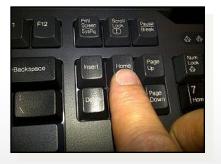

Together through life sciences.

Creating a Template



Together through life sciences.

Delimit the Analysis Region

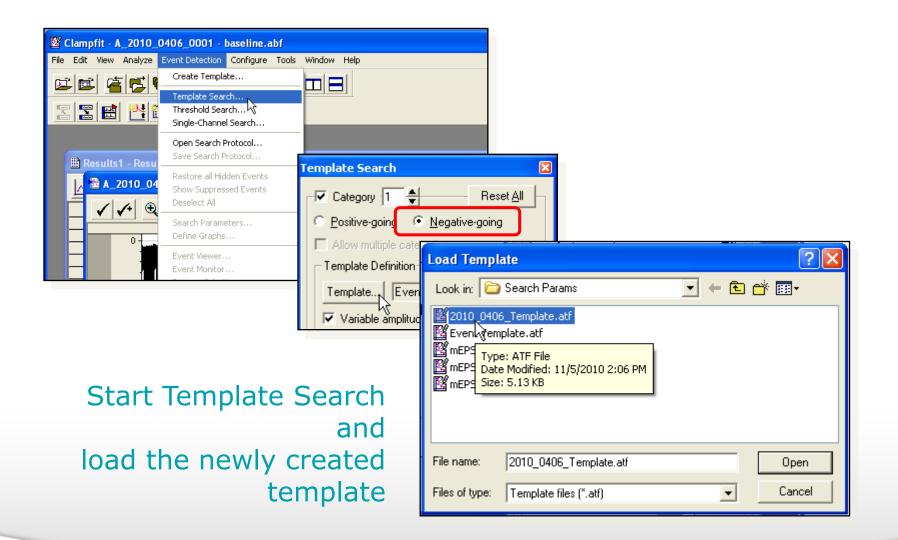

Full-scale the time axis,

unlock cursors 1 and 2,

and send cursor 1...

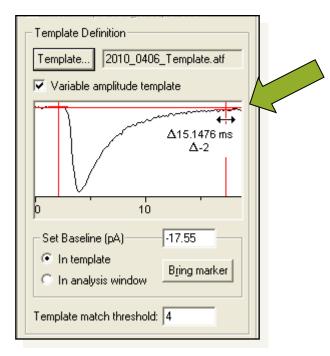
..."**Home**" to the start of the trace

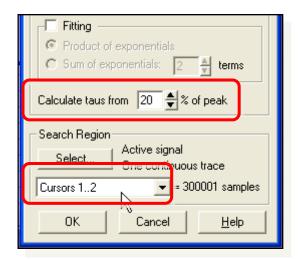
Together through life sciences.


Delimit the Analysis Region

	Double- click on Cursor 2,
	Cursor Properties for Cursor 2 Vertical Cursor Time Value Move To • Time (s): • Sample number: • 960404 • 10
cond it to	O Tag number: 1 ↓
send it to 30 s,	Number of decimal places to show: Default (4) Auto Scale - Full Scale - Zoom - Invert -
	and zoom the region we are doing to analyze

Together through life sciences.

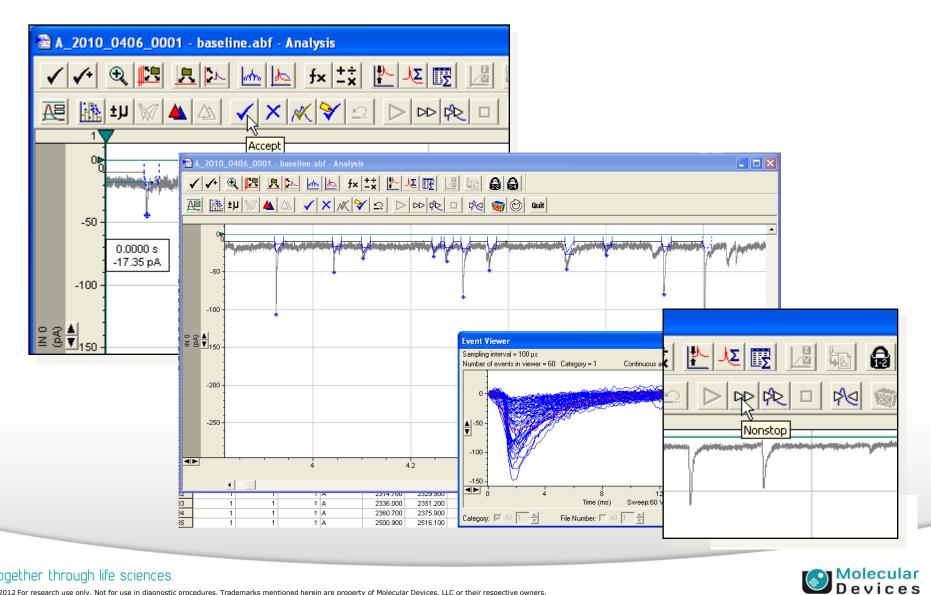

Template Search



Together through life sciences.

Template Search

Define the measurement region.

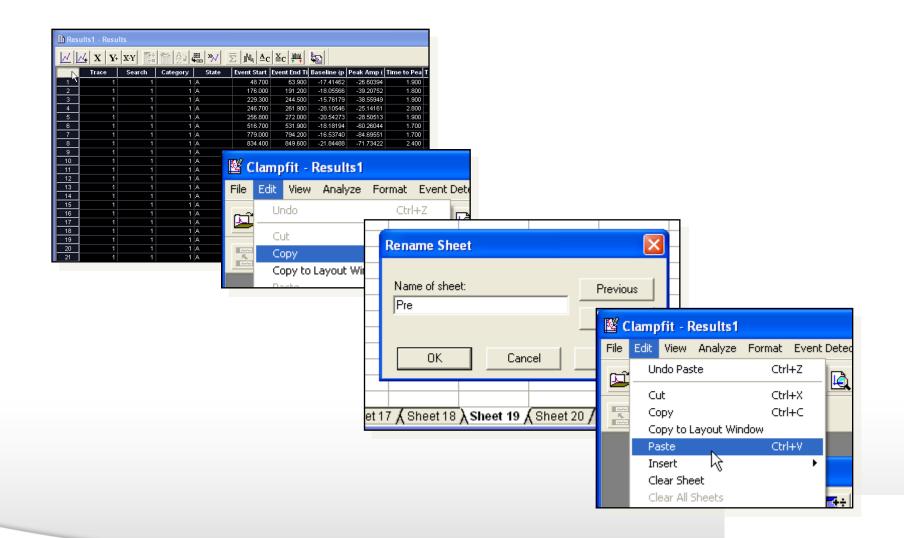


Set taus and analysis region.

Together through life sciences.

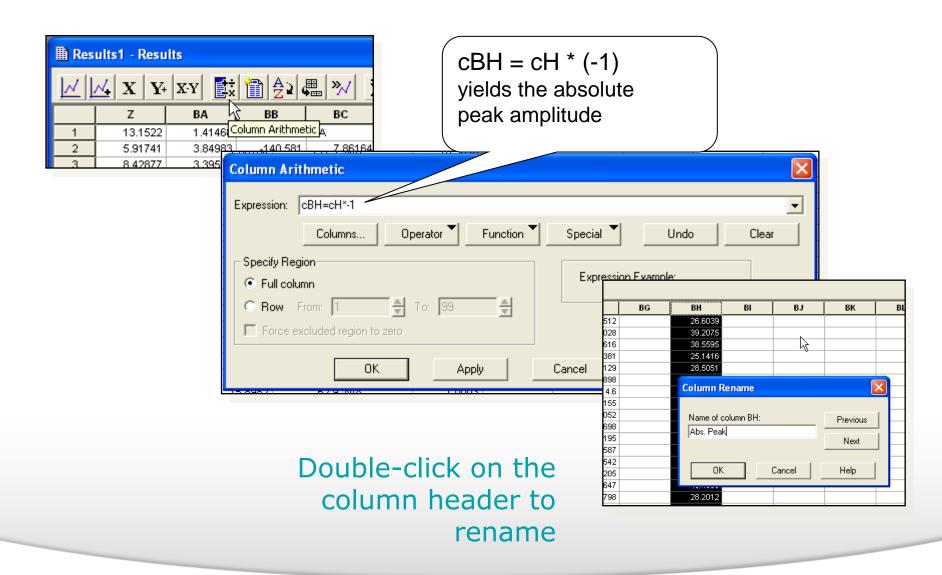
Template Search

Together through life sciences.

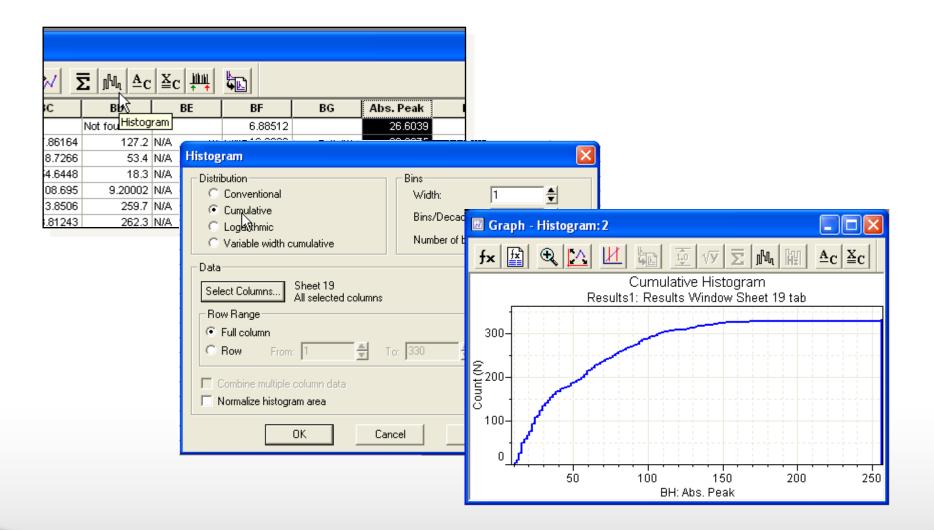

Defining "Sanity-check" Graphs

✓ ✓ €	Define Graphs
	✓ Graph 1 ○ Conventional histogram Bin width (ms): 0.1 ✓ Auto ○ Logarithmic histogram Bins/decade: 10 ✓ SqRt N ○ Scatter plot Convert bin counts to frequency ✓ Peak ampli This graph Indicates the absence of an overall trend (run-up or run-down of
	Image: Conventional histogram Bin width (pA): 0.1 Image: Auto Category Image: Auto Image
	Graph 3 Conventional histo Conventional hist
	Graph 4 distinct amplitude. Conventional histor Logarithmic histogram Scatter plot OK Car OK Car OK Car
	Peak Amplitude (pA) Time Of Peak (ms)

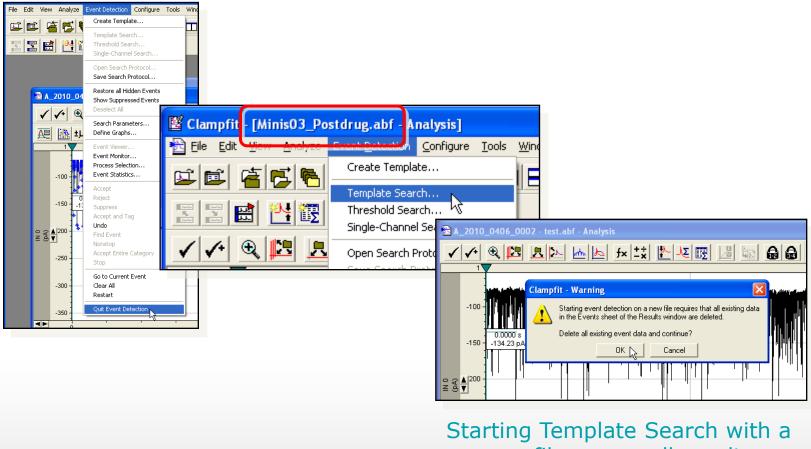
Together through life sciences.


Copying the Pre-compound Results to a New Sheet

Together through life sciences.

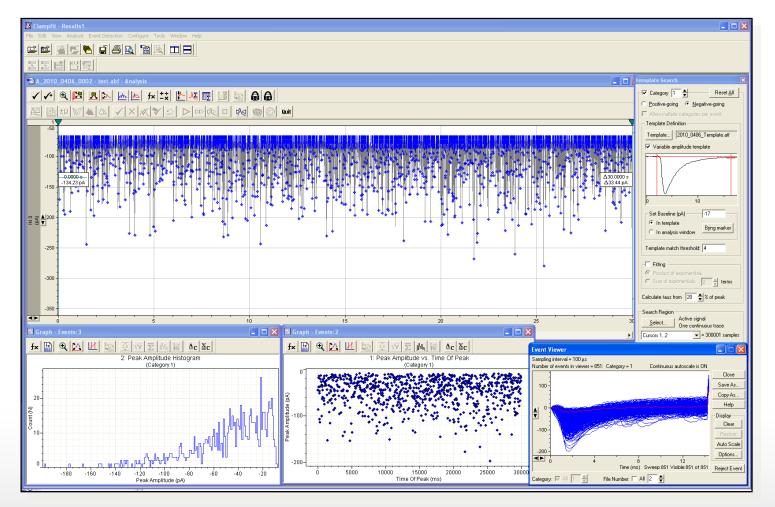

Computing the Absolute Peak Amplitude

Together through life sciences.


Creating a Cumulative Peak Histogram

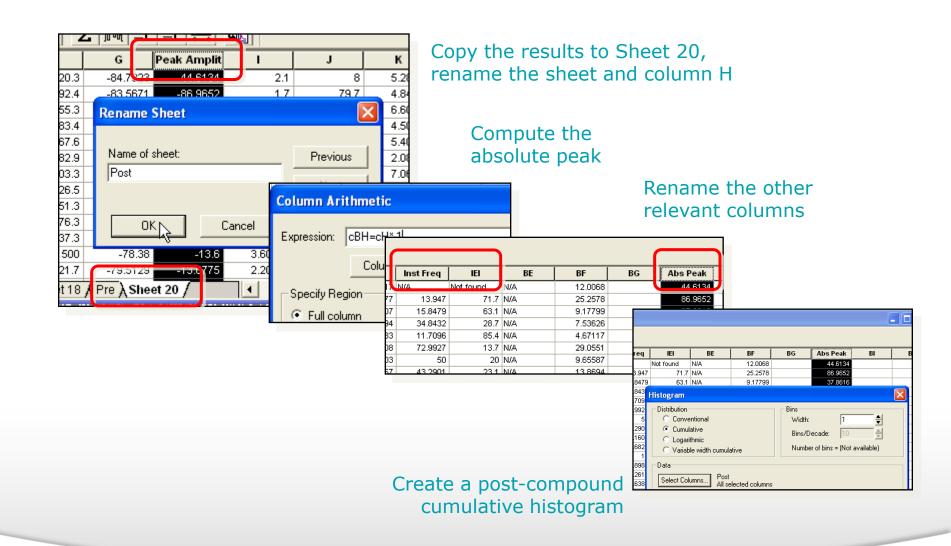
Together through life sciences.

Repeat the Template Search After Compound Addition



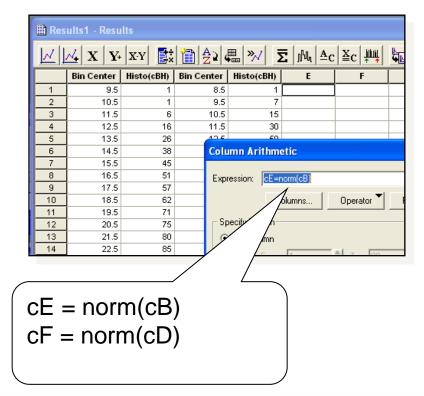
new file erases all results on the Events sheet (but not Sheet 19)

Post-compound Results


The post-compound data file after completed analysis with

 Together through life sciences.
 "sanity check graphs".

 ©2012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of Molecular Devices, LLC or their respective owners.

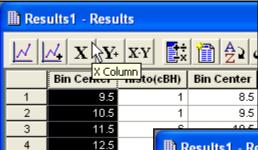

Repeat Post-processing Steps

Together through life sciences.

Normalizing the Histogram Values

Normalize the Bin Count columns on the Histogram sheet

Rename the two new columns


. »/ I	Ξ յԱլ ≙c	≚c	4		
Histo(cBH)	Norm Pre P	F	G	Н	
1	0	0.00117509			
7	0	0.00822562			
15	Column Ren	ame			
50					
6	Name of colu	mn F:		Previous	
86	Norm Post Pe	eak			
10:	,			Next	
111					_
12: 138	OK	Car	icel	Help	
150	L				-
154	0.222222	0.100304			

©2012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of Molecular Devices, LLC or their respective owners.

Together through life sciences.

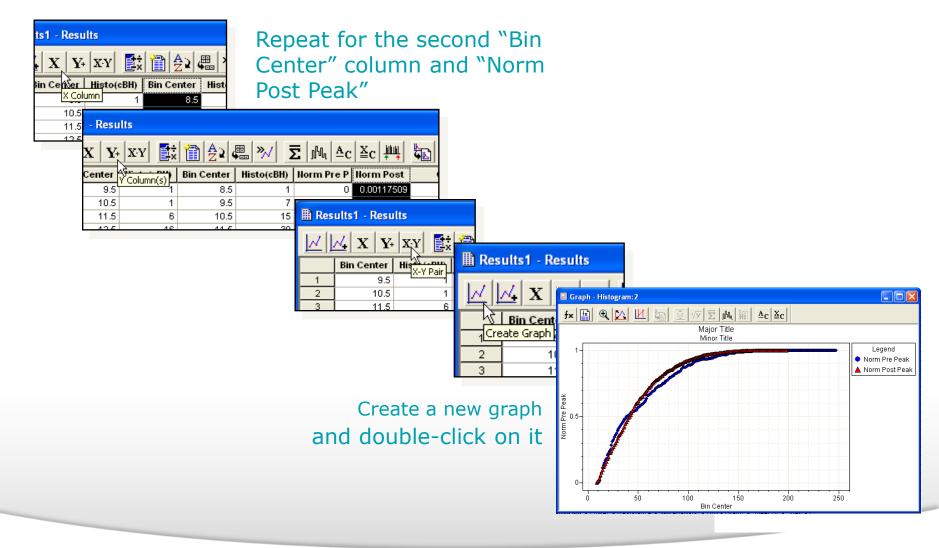
Creating a Combined, Normalized Cumulative Histogram

125

Make the first "Bin Center" column an X column

🗎 Res	ults1 - Resu	lts						
	<u>~</u> x y	XY	1 2 1 C	≞ ≫/ 5	2 J	հղ [≜c	≚c	
	Bin Center		Bin Center	Histo(cBH)	Norr	n Pre P	Norm Post	
1	9.5	Column(s) 1	8.5	1		0	0.00117509	1
2	10.5	1	9.5	7		0	0.00900560	1
3	11.5	6	10.5	15	C	Res	ults1 - Resu	lts
4	12.5	16	11.5	30	C			
5	13.5	26	12.5	50	0.		$\mathbf{N}_{\mathbf{k}} \mathbf{X} \mathbf{V}_{\mathbf{k}}$	X

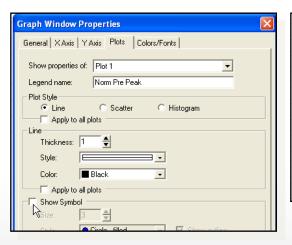
Make the "Norm Pre Peak" column a Y column


	Bin Center	His X-Y Pair Bin (
1	9.5					
2	10.5	1				
3	11.5	6				

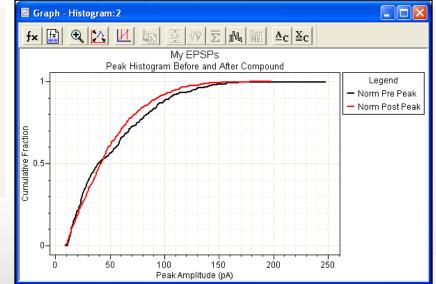
Define the two columns as an X-Y pair

Together through life sciences.

Creating a Combined, Normalized Cumulative Histogram

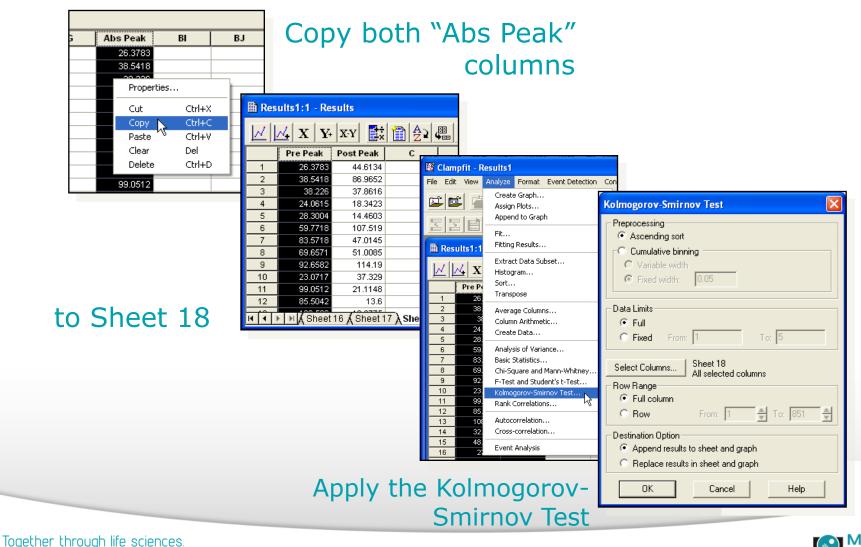

Together through life sciences.

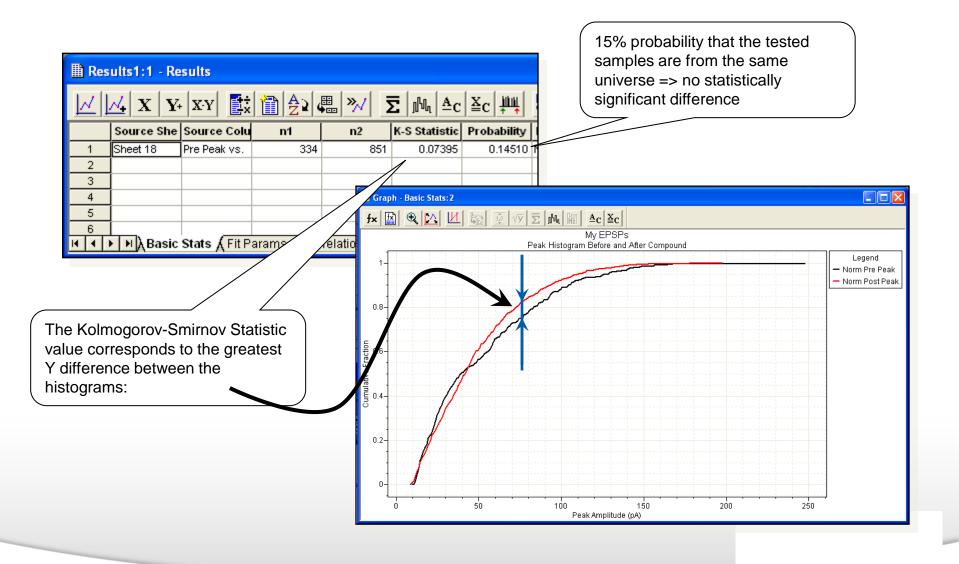
Creating a Combined, Normalized Cumulative Histogram


Graph Window Properties	×
General X Axis Y Axis Plots Colors/Fonts Items to Display V Axis X major gridlines X Axis Y Y axis X major gridlines X Name and units Name and units X major gridlines Tick numbers Rotated text Y major gridlines Frame box Tick numbers Y major gridlines	
Titles Image: My EPSPs Image: Minor title: Peak Histogram Before and After Compound Image: Legend: Legend Image: Minor title: Peak Histogram Before and After Compound Image: Minor title: Peak Histogram Before and After Compound Image: Minor title: Peak Histogram Before and After Compound Image: Minor title: Peak Histogram Before and After Compound	

Graph Window Properties	×
General XAxis YAxis Plots Colors/Fonts	
Axis title: Peak Amplitude Units: pA	
Graph Window Properties	X
General X Axis Y Axis Plots Colors/Fonts	
Axis title: Cumulative Fraction	

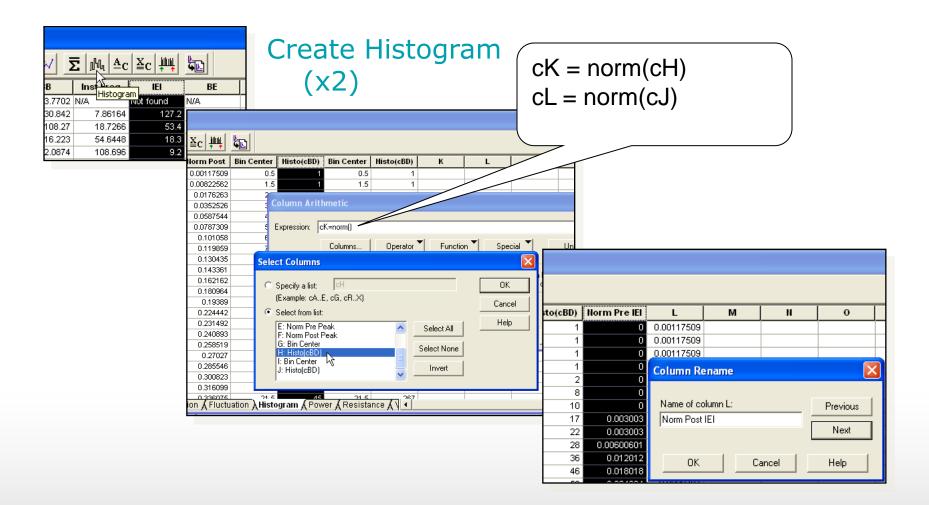
Modify Graph titles, axis titles and plots for an appearance as shown



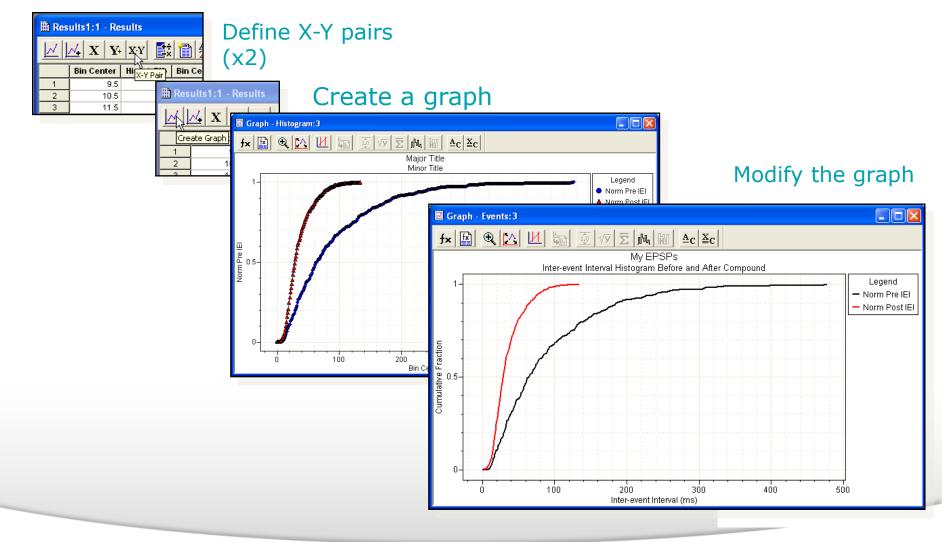

Together through life sciences.

Kolmogorov-Smirnov Test

Molecular Devices


Kolmogorov-Smirnov Test Results

Creating Histograms for Inter-event Intervals



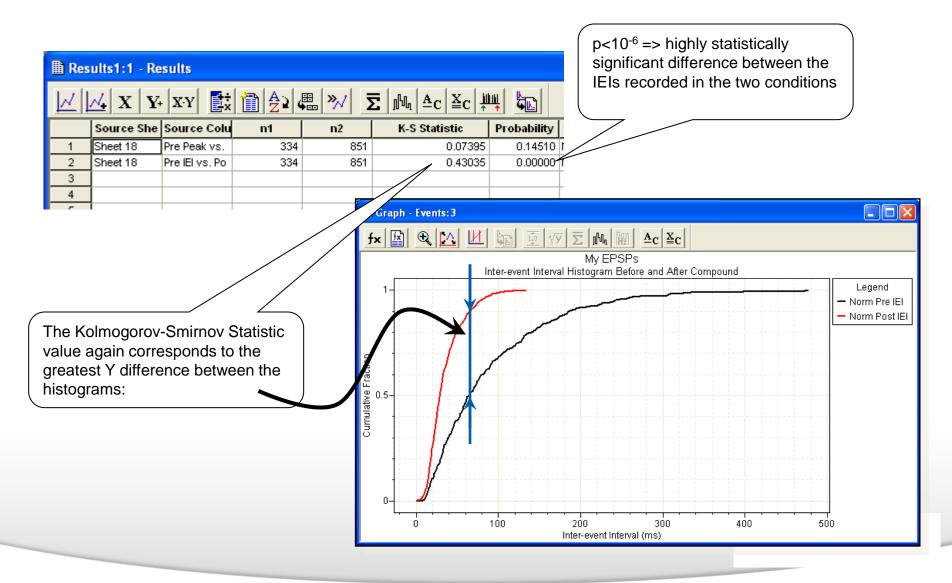
©2012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of Molecular Devices, LLC or their respective owners.

Together through life sciences.

Creating Histograms for Inter-event Intervals

©2012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of Molecular Devices, LLC or their respective owners

Together through life sciences.


Kolmogorov-Smirnov Test for Interevent Intervals

√ <u>Σ</u> № ≜c ≚c ₩ €	Copy Pre and Post	
B Inst Freq IEI BE	IEI columns to	
3.7702 N/A Not found N/A		
30.842 7.86164 127.2 N/A 108.27 18.7266 53.4 N/A		
16.223 54.6448 Properties 2.0874 108.696	Results1:1 - Results	
71 279 3 8506 Cut Ctrl+X	<u> </u> ∠ ∠ X Y XY Ex 1 A 2 4 w > Σ M Ac ≚c s	
Copy Ctrl+C 38.674 3.81243 Paste Ctrl+V 75.404 17.8253 Ctrl+V Ctrl+V		un b_1
07.662 10.917 Clear Del	Pre Peak Post Peak Pre IEI Post IEI E Y Image: A transmission of the constraint	
03.279 11.0619 Delete Ctrl+D 03.431 9.03343 110.7 N/A	2 38.5418 86.9652 127.2 71.7 st Peak Pre IEI Post IEI E F 3 38.226 37.8616 44.6134 Not found	G
68 838 12 9534 77 2001 N/A	4 24.0615 18.3423 Column Rename 86.9652 127.2 71.7	
	5 28.3004 14.4603 37.8616 53.4 63.1 6 59.7718 107.519 Mame of column D: 18.3423 000 000	
	7 83.5718 47.0145 Name of column D: Previo 14.4603 Kolmogorov-Smirnov Test	×
	8 69.6571 51.0085 Next 107.519 Preprocessing	
	10 23.0717 37.329 51.0085 6 Ascending sort	
	10 22.011 Gr.325 11 99.0512 21.1148 OK Cancel Help 114.19 12 95.6512 13.25 OK Cancel Help 114.19 13 95.6512 13.25 OK Cancel Help 114.19	
	12 63.3042 13.61 21.1148 © Fixed width: 0.05	
	13.6	
	26.3616	
	100.654 33.8393 C Fixed From: 1 To: 5	
	36.1158	
	37.1242 Select Columns Sheet 18 64.0997	
	44.457 Row Range	
	59.7216 Image: Full column 21.8769 Image: Row From: Image: Full column	051
	25.6714	851
	Be sure to Append, 67.9402 • Append results to sheet and graph	
	not Replace the 19.5468 C Replace results in sheet and graph	
		Help

Together through life sciences.

Kolmogorov-Smirnov Test Results

Together through life sciences.

Retain the Kolmogorov-Smirnov Results

🖹 Re	Results1:1 - Results									
$[\underline{\mathcal{M}}]$										
	Source She	Source Colu	n1	n2	K-S Statistic	Probability	Num Bins 1	Num Bins 2		
1	Sheet 18	Pre Peak vs.	334	851	0.07395	0.14510		N/A		
2	Sheet 18	Pre IEI vs. Po	334	851	0.43035	0.00	n Properties			
3							Propercies			
4							Cut (Etrl+X		
5							Copy (Etrl+C		
6							Paster (trl+V		
1 1	⁷ Ⅰ ▲ ▶ ਸ਼ & Statistics A Basic Stats & Fit Params & Correlation & Fluctuation & Histog							Del ce ,{ ∨-		
		 اینا اصحاب					Delete (Itrl+D		

Copy the results of the two K-S tests to Sheet 17

Results1:1 - Results										
$\boxed{ \mathcal{M} } \boxed{X} \boxed{Y_{+}} \boxed{XY} \boxed{\mathbb{E}_{x}} \boxed{\mathbb{E}_{z}} \boxed{\mathbb{E}_{z}$										
	A B C D E F									
1	Sheet 18 🦵		<u>~</u> 84	851	0.073946	0.145096				
2	Sheet 18	Properties	34	851	0.430346	0				
3		Cut	Ctrl+X							
4		Сору	Ctrl+C							
5		Paste	Ctrl+V							
6		Clear 🕅	Del							
7		Delete	Ctrl+D -							
8	Ļ									
	🕨 🕅 🖌 Shei	et 15 🖌 Sheet 1	16 <mark>)</mark> Sheet 1i	7 🖌 Sheet 18	K Pre K Pos	t/ •				

Together through life sciences.

Basic Statistics for Peaks and Interevent Intervals

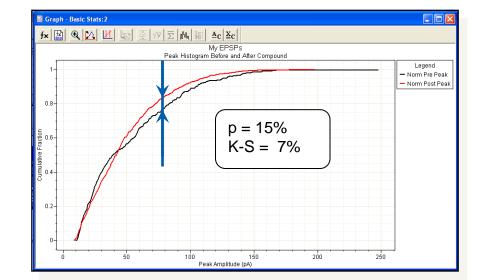
🖉 Clampfit - Results1												
File Edit View Analyze Format Event Detection Configure Too			Too									
	Create Graph Assign Plots Append to Graph											
Results1:1	Fit Fitting Results		asic Statistic	:s			3					
Image: Market with the second secon	Extract Data Subset Histogram Sort Transpose Average Columns	t IEI ind 71.7	– Measurements Number pe Minimum Maximum Variance Mean		Standard deviation Standard error Coefficient of variation Sum Sum of squares							
3 38 4 24. 5 28.	Column Arithmetic Create Data	63.1 28.7 85.4	Median		Jun of squares							
6 59. 7 83.	Analysis of Variance Basic Statistics	13.7 20	- Destination Op	results to sheet	C Replace results in	sheet						
8 69. 9 92. 10 23. 11 99. 12 85. 13 106 14 32. 15 48. 16 21. 17 36.7 18 422.8	Chi-Square and Mann-Wr&ney F-Test and Student's t-Test Kolmogorov-Smirnov Test Rank Correlations Autocorrelation Cross-correlation Event Analysis 403 36.1158 62.9 692 37.1242 28.2	231 24.9 25.2 62.5 62.9 20.3 60.1 47.9 4.2001 15.2 28.5999	Row Range Full colu Row C Perform Category	elect Columns Sheet 18 All selected columns w Range Full column Row From: 1 To: 1 To: Perform Breakdown Analysis Category column: A: Pre Peak Specify Bins								
	neet 15 <mark>(</mark> Sheet 16 (Sheet 1 sults1:1 - Results	/ ASheet 18			1	1						
	14 X Y+ XY		A2	»,√ Σ	M ₄ ≜c ≚c	1 H						
	Source	#/Cat	Min	Max	Mean	Median	Std. Dev.	Std Err.	CoVar.	Sum	Sum Sq.	
1	Pre Peak:Sheet 18	334	9.61644	247.951	52.2991	39.440	37.6507	2.06015	0.719911		1.38561e+00	
2	Post Peak:Sheet 18	851	8.74508	197.461	48.8093	42.044	31.1591	1.06812	0.638385		2.85264e+00	
3	Pre IEI:Sheet 18	334	0	476.301	89.603	64.300	77.6239	4.24739	0.866309		4.68807e+00	Ļ
4	Post IEI:Sheet 18	851	0	133.399	35.2031	29.200	21.3367	0.731413	0.606104	29957.8	1.44157e+00	╞
5												┝
		1							1			

Together through life sciences.

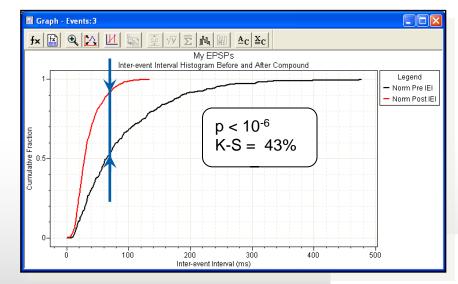
©2012 For research use only. Not for use in diagnostic procedures. Trademarks mentioned herein are property of Molecular Devices, LLC or their respective owners.

Var

1417.57


970.892

6025.47


455.255

Summary

- Are there differences in the amplitude distribution?
- No.
 - Post-synaptic mechanisms are unaffected.

- Are there differences in the frequency?
- Yes.
 - Pre-synaptic mechanisms are upregulated.

Together through life sciences.

Clampfit Features Discussed

- Event Detection > Create Template
- Event Detection > Template Search
- Move Cursors efficiently
- View > Zoom > Between Cursors
- Analyze > Arithmetic
- Format > Column > Rename
- Format > Rename Sheet
- Analyze > Histogram
- Efficiently creating a graph using X-Y pairs
- Editing a graph
- Analyze > Kolmogorov-Smirnov Test
- Analyze > Basic Statistics

Together through life sciences.

End Thank You

Together through life sciences.

www.moleculardevices.com